910 resultados para 010109 Ordinary Differential Equations Difference Equations and Dynamical Systems
Resumo:
We face the problem of characterizing the periodic cases in parametric families of (real or complex) rational diffeomorphisms having a fixed point. Our approach relies on the Normal Form Theory, to obtain necessary conditions for the existence of a formal linearization of the map, and on the introduction of a suitable rational parametrization of the parameters of the family. Using these tools we can find a finite set of values p for which the map can be p-periodic, reducing the problem of finding the parameters for which the periodic cases appear to simple computations. We apply our results to several two and three dimensional classes of polynomial or rational maps. In particular we find the global periodic cases for several Lyness type recurrences
Resumo:
This paper studies non-autonomous Lyness type recurrences of the form x_{n+2}=(a_n+x_n)/x_{n+1}, where a_n is a k-periodic sequence of positive numbers with prime period k. We show that for the cases k in {1,2,3,6} the behavior of the sequence x_n is simple(integrable) while for the remaining cases satisfying k not a multiple of 5 this behavior can be much more complicated(chaotic). The cases k multiple of 5 are studied separately.
Resumo:
This paper studies non-autonomous Lyness type recurrences of the form xn+2 = (an+xn+1)=xn, where fang is a k-periodic sequence of positive numbers with primitive period k. We show that for the cases k 2 f1; 2; 3; 6g the behavior of the sequence fxng is simple (integrable) while for the remaining cases satisfying this behavior can be much more complicated (chaotic). We also show that the cases where k is a multiple of 5 present some di erent features.
Resumo:
This paper is concerned with the lower semicontinuity of attractors for semilinear non-autonomous differential equations in Banach spaces. We require the unperturbed attractor to be given as the union of unstable manifolds of time-dependent hyperbolic solutions, generalizing previous results valid only for gradient-like systems in which the hyperbolic solutions are equilibria. The tools employed are a study of the continuity of the local unstable manifolds of the hyperbolic solutions and results on the continuity of the exponential dichotomy of the linearization around each of these solutions.
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
Microcirculatory vessels are lined by endothelial cells (ECs) which are surrounded by a single or multiple layer of smooth muscle cells (SMCs). Spontaneous and agonist induced spatiotemporal calcium (Ca2+) events are generated in ECs and SMCs, and regulated by complex bi-directional signaling between the two layers which ultimately determines the vessel tone. The contractile state of microcirculatory vessels is an important factor in the determination of vascular resistance, blood flow and blood pressure. This dissertation presents theoretical insights into some of the important and currently unresolved phenomena in microvascular tone regulation. Compartmental and continuum models of isolated EC and SMC, coupled EC-SMC and a multi-cellular vessel segment with deterministic and stochastic descriptions of the cellular components were developed, and the intra- and inter-cellular spatiotemporal Ca2+ mobilization was examined. Coupled EC-SMC model simulations captured the experimentally observed localized subcellular EC Ca2+ events arising from the opening of EC transient receptor vanilloid 4 (TRPV4) channels and inositol triphosphate receptors (IP3Rs). These localized EC Ca2+ events result in endothelium-derived hyperpolarization (EDH) and Nitric Oxide (NO) production which transmit to the adjacent SMCs to ultimately result in vasodilation. The model examined the effect of heterogeneous distribution of cellular components and channel gating kinetics in determination of the amplitude and spread of the Ca2+ events. The simulations suggested the necessity of co-localization of certain cellular components for modulation of EDH and NO responses. Isolated EC and SMC models captured intracellular Ca2+ wave like activity and predicted the necessity of non-uniform distribution of cellular components for the generation of Ca2+ waves. The simulations also suggested the role of membrane potential dynamics in regulating Ca2+ wave velocity. The multi-cellular vessel segment model examined the underlying mechanisms for the intercellular synchronization of spontaneous oscillatory Ca2+ waves in individual SMC. From local subcellular events to integrated macro-scale behavior at the vessel level, the developed multi-scale models captured basic features of vascular Ca2+ signaling and provide insights for their physiological relevance. The models provide a theoretical framework for assisting investigations on the regulation of vascular tone in health and disease.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
There are several ways of controlling the propagation of a contagious disease. For instance, to reduce the spreading of an airborne infection, individuals can be encouraged to remain in their homes and/or to wear face masks outside their domiciles. However, when a limited amount of masks is available, who should use them: the susceptible subjects, the infective persons or both populations? Here we employ susceptible-infective-recovered (SIR) models described in terms of ordinary differential equations and probabilistic cellular automata in order to investigate how the deletion of links in the random complex network representing the social contacts among individuals affects the dynamics of a contagious disease. The inspiration for this study comes from recent discussions about the impact of measures usually recommended by health public organizations for preventing the propagation of the swine influenza A (H1N1) virus. Our answer to this question can be valid for other eco-epidemiological systems. (C) 2010 Elsevier BM. All rights reserved.
Resumo:
Ablation is a thermal protection process with several applications in engineering, mainly in the field of airspace industry. The use of conventional materials must be quite restricted, because they would suffer catastrophic flaws due to thermal degradation of their structures. However, the same materials can be quite suitable once being protected by well-known ablative materials. The process that involves the ablative phenomena is complex, could involve the whole or partial loss of material that is sacrificed for absorption of energy. The analysis of the ablative process in a blunt body with revolution geometry will be made on the stagnation point area that can be simplified as a one-dimensional plane plate problem, hi this work the Generalized Integral Transform Technique (GITT) is employed for the solution of the non-linear system of coupled partial differential equations that model the phenomena. The solution of the problem is obtained by transforming the non-linear partial differential equation system to a system of coupled first order ordinary differential equations and then solving it by using well-established numerical routines. The results of interest such as the temperature field, the depth and the rate of removal of the ablative material are presented and compared with those ones available in the open literature.
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper we present two studies, the first one completed and the second one in development, which are based in teaching approaches that propose the qualitative study of mathematical models as a strategy for the teaching and learning of mathematical concepts. These teaching approaches focus on subjects from Higher Education such as Introduction to Ordinary Differential Equations and Topics of Differential and Integral Calculus. We denominate this common aspect of the teaching approaches as Model Analysis and in a preliminary level we relate it with Mathematical Modeling. Furthermore, we discuss some questions related with the choice of the theme and the role of Digital Technologies when Model Analysis is applied.
Resumo:
The β2 adrenergic receptor (β2AR) regulates smooth muscle relaxation in the vasculature and airways. Long- and Short-acting β-agonists (LABAs/SABAs) are widely used in treatment of chronic obstructive pulmonary disorder (COPD) and asthma. Despite their widespread clinical use we do not understand well the dominant β2AR regulatory pathways that are stimulated during therapy and bring about tachyphylaxis, which is the loss of drug effects. Thus, an understanding of how the β2AR responds to various β-agonists is crucial to their rational use. Towards that end we have developed deterministic models that explore the mechanism of drug- induced β2AR regulation. These mathematical models can be classified into three classes; (i) Six quantitative models of SABA-induced G protein coupled receptor kinase (GRK)-mediated β2AR regulation; (ii) Three phenomenological models of salmeterol (a LABA)-induced GRK-mediated β2AR regulation; and (iii) One semi-quantitative, unified model of SABA-induced GRK-, protein kinase A (PKA)-, and phosphodiesterase (PDE)-mediated regulation of β2AR signalling. The various models were constrained with all or some of the following experimental data; (i) GRK-mediated β2AR phosphorylation in response to various LABAs/SABAs; (ii) dephosphorylation of the GRK site on the β2AR; (iii) β2AR internalisation; (iv) β2AR recycling; (v) β2AR desensitisation; (vi) β2AR resensitisation; (vii) PKA-mediated β2AR phosphorylation in response to a SABA; and (viii) LABA/SABA induced cAMP profile ± PDE inhibitors. The models of GRK-mediated β2AR regulation show that plasma membrane dephosphorylation and recycling of the phosphorylated β2AR are required to reconcile with the measured dephosphorylation kinetics. We further used a consensus model to predict the consequences of rapid pulsatile agonist stimulation and found that although resensitisation was rapid, the β2AR system retained the memory of prior stimuli and desensitised much more rapidly and strongly in response to subsequent stimuli. This could explain tachyphylaxis of SABAs over repeated use in rescue therapy of asthma patients. The LABA models show that the long action of salmeterol can be explained due to decreased stability of the arrestin/β2AR/salmeterol complex. This could explain long action of β-agonists used in maintenance therapy of asthma patients. Our consensus model of PKA/PDE/GRK-mediated β2AR regulation is being used to identify the dominant β2AR desensitisation pathways under different therapeutic regimens in human airway cells. In summary our models represent a significant advance towards understanding agonist-specific β2AR regulation that will aid in a more rational use of the β2AR agonists in the treatment of asthma.
Resumo:
This article addresses the problem of stability of impulsive control systems whose dynamics are given by measure driven differential inclusions. One important feature concerns the adopted solution which allows the consideration of systems whose singular dynamics do not satisfy the so-called Frobenius condition. After extending the conventional notion of control Lyapounov pair for impulsive systems, some stability conditions of the Lyapounov type are given. Some conclusions follow the outline of the proof of the main result.