Integrability and non-integrability of periodic non-autonomous Lyness recurrences (revised and enlarged version)
| Contribuinte(s) |
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya. CODALAB - Control, Dinàmica i Aplicacions |
|---|---|
| Data(s) |
10/05/2012
|
| Resumo |
This paper studies non-autonomous Lyness type recurrences of the form xn+2 = (an+xn+1)=xn, where fang is a k-periodic sequence of positive numbers with primitive period k. We show that for the cases k 2 f1; 2; 3; 6g the behavior of the sequence fxng is simple (integrable) while for the remaining cases satisfying this behavior can be much more complicated (chaotic). We also show that the cases where k is a multiple of 5 present some di erent features. Preprint. Versió revisada i augmentada d'un anterior report homònim. Preprint |
| Identificador | |
| Idioma(s) |
eng |
| Direitos |
Open Access |
| Palavras-Chave | #Àrees temàtiques de la UPC::Matemàtiques i estadística::Equacions diferencials i integrals::Sistemes dinàmics #Differential equations #Differentiable dynamical systems #Integrability and non-integrability of discrete systems #Numerical chaos #Periodic difference equations #QRT maps #Rational and meromorphic first integrals #Equacions diferencials #Sistemes dinàmics diferenciables #Classificació AMS::39 Difference and functional equations::39A Difference equations #Classificació AMS::37 Dynamical systems and ergodic theory::37C Smooth dynamical systems: general theory |
| Tipo |
info:eu-repo/semantics/other |