Integrability and non-integrability of periodic non-autonomous Lyness recurrences (revised and enlarged version)


Autoria(s): Cima Mollet, Anna; Gasull Embid, Armengol; Mañosa Fernández, Víctor
Contribuinte(s)

Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III

Universitat Politècnica de Catalunya. CODALAB - Control, Dinàmica i Aplicacions

Data(s)

10/05/2012

Resumo

This paper studies non-autonomous Lyness type recurrences of the form xn+2 = (an+xn+1)=xn, where fang is a k-periodic sequence of positive numbers with primitive period k. We show that for the cases k 2 f1; 2; 3; 6g the behavior of the sequence fxng is simple (integrable) while for the remaining cases satisfying this behavior can be much more complicated (chaotic). We also show that the cases where k is a multiple of 5 present some di erent features.

Preprint. Versió revisada i augmentada d'un anterior report homònim.

Preprint

Identificador

http://hdl.handle.net/2117/14345

Idioma(s)

eng

Direitos

Open Access

Palavras-Chave #Àrees temàtiques de la UPC::Matemàtiques i estadística::Equacions diferencials i integrals::Sistemes dinàmics #Differential equations #Differentiable dynamical systems #Integrability and non-integrability of discrete systems #Numerical chaos #Periodic difference equations #QRT maps #Rational and meromorphic first integrals #Equacions diferencials #Sistemes dinàmics diferenciables #Classificació AMS::39 Difference and functional equations::39A Difference equations #Classificació AMS::37 Dynamical systems and ergodic theory::37C Smooth dynamical systems: general theory
Tipo

info:eu-repo/semantics/other