Integrability and non-integrability of periodic non-autonomous Lyness recurrences


Autoria(s): Cima Mollet, Anna; Gasull Embid, Armengol; Mañosa Fernández, Víctor
Contribuinte(s)

Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III

Universitat Politècnica de Catalunya. CODALAB - Control, Dinàmica i Aplicacions

Data(s)

11/05/2012

Resumo

This paper studies non-autonomous Lyness type recurrences of the form x_{n+2}=(a_n+x_n)/x_{n+1}, where a_n is a k-periodic sequence of positive numbers with prime period k. We show that for the cases k in {1,2,3,6} the behavior of the sequence x_n is simple(integrable) while for the remaining cases satisfying k not a multiple of 5 this behavior can be much more complicated(chaotic). The cases k multiple of 5 are studied separately.

Preprint arXiv:1012.4925

Preprint

Identificador

http://hdl.handle.net/2117/10770

Idioma(s)

eng

Direitos

Open Access

Palavras-Chave #Àrees temàtiques de la UPC::Matemàtiques i estadística::Equacions diferencials i integrals::Sistemes dinàmics #Differential equations #Differentiable dynamical systems #Periodic difference equations #Integrability #Non-integrability #Meromorphic first integrals #Chaos #Equacions diferencials #Sistemes dinàmics diferenciables #Classificació AMS::39 Difference and functional equations::39A Difference equations
Tipo

info:eu-repo/semantics/other