Integrability and non-integrability of periodic non-autonomous Lyness recurrences
Contribuinte(s) |
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya. CODALAB - Control, Dinàmica i Aplicacions |
---|---|
Data(s) |
11/05/2012
|
Resumo |
This paper studies non-autonomous Lyness type recurrences of the form x_{n+2}=(a_n+x_n)/x_{n+1}, where a_n is a k-periodic sequence of positive numbers with prime period k. We show that for the cases k in {1,2,3,6} the behavior of the sequence x_n is simple(integrable) while for the remaining cases satisfying k not a multiple of 5 this behavior can be much more complicated(chaotic). The cases k multiple of 5 are studied separately. Preprint arXiv:1012.4925 Preprint |
Identificador | |
Idioma(s) |
eng |
Direitos |
Open Access |
Palavras-Chave | #Àrees temàtiques de la UPC::Matemàtiques i estadística::Equacions diferencials i integrals::Sistemes dinàmics #Differential equations #Differentiable dynamical systems #Periodic difference equations #Integrability #Non-integrability #Meromorphic first integrals #Chaos #Equacions diferencials #Sistemes dinàmics diferenciables #Classificació AMS::39 Difference and functional equations::39A Difference equations |
Tipo |
info:eu-repo/semantics/other |