987 resultados para learning disorder
Resumo:
This article discusses the lessons learned from developing and delivering the Vocational Management Training for the European Tourism Industry (VocMat) online training programme, which was aimed at providing flexible, online distance learning for the European tourism industry. The programme was designed to address managers ‘need for flexible, senior management level training which they could access at a time and place which fitted in with their working and non-work commitments. The authors present two main approaches to using the Virtual Learning Environment, the feedback from the participants, and the implications of online Technology in extending tourism training opportunities
Resumo:
This paper shows how instructors can use the problem‐based learning method to introduce producer theory and market structure in intermediate microeconomics courses. The paper proposes a framework where different decision problems are presented to students, who are asked to imagine that they are the managers of a firm who need to solve a problem in a particular business setting. In this setting, the instructors’ role isto provide both guidance to facilitate student learning and content knowledge on a just‐in‐time basis
Resumo:
Congenital naevi of the melanocytic system include numerous types, which differ in their clinical appearance, pattern of distribution, and histopathological features (1). Examples are large congenital melanocytic naevus, macular naevus spilus, papular naevus spilus, café-au-lait macules of neurofibromatosis 1, café-au-lait macules arranged in broad bands as noted in McCune-Albright syndrome, partial unilateral lentiginosis, naevus achromicus (naevus depigmentosus), phylloid hypermelanosis, and phylloid hypomelanosis (1–3). We describe here two patients with a systematized pigmentary naevus that differed from all naevi reported so far.
Resumo:
OBJECTIVE: Previous studies reported that the severity of cognitive deficits in euthymic patients with bipolar disorder (BD) increases with the duration of illness and postulated that progressive neuronal loss or shrinkage and white matter changes may be at the origin of this phenomenon. To explore this issue, the authors performed a case-control study including detailed neuropsychological and magnetic resonance imaging analyses in 17 euthymic elderly patients with BD and 17 healthy individuals. METHODS: Neuropsychological evaluation concerned working memory, episodic memory, processing speed, and executive functions. Volumetric estimates of the amygdala, hippocampus, entorhinal cortex, and anterior cingulate cortex were obtained using both voxel-based and region of interest morphometric methods. Periventricular and deep white matter were assessed semiquantitatively. Differences in cognitive performances and structural data between BD and comparison groups were analyzed using paired t-test or analysis of variance. Wilcoxon test was used in the absence of normal distribution. RESULTS: Compared with healthy individuals, patients with BD obtained significantly lower performances in processing speed, working memory, and episodic memory but not in executive functions. Morphometric analyses did not show significant volumetric or white matter differences between the two groups. CONCLUSIONS: Our results revealed impairment in verbal memory, working memory, and processing speed in euthymic older adults with BD. These cognitive deficits are comparable both in terms of affected functions and size effects to those previously reported in younger cohorts with BD. Both this observation and the absence of structural brain abnormalities in our cohort do not support a progressively evolving neurotoxic effect in BD.
Resumo:
This paper proposes a hybrid coordination method for behavior-based control architectures. The hybrid method takes advantages of the robustness and modularity in competitive approaches as well as optimized trajectories in cooperative ones. This paper shows the feasibility of applying this hybrid method with a 3D-navigation to an autonomous underwater vehicle (AUV). The behaviors are learnt online by means of reinforcement learning. A continuous Q-learning implemented with a feed-forward neural network is employed. Realistic simulations were carried out. The results obtained show the good performance of the hybrid method on behavior coordination as well as the convergence of the behaviors
Resumo:
The purpose of this paper is to propose a Neural-Q_learning approach designed for online learning of simple and reactive robot behaviors. In this approach, the Q_function is generalized by a multi-layer neural network allowing the use of continuous states and actions. The algorithm uses a database of the most recent learning samples to accelerate and guarantee the convergence. Each Neural-Q_learning function represents an independent, reactive and adaptive behavior which maps sensorial states to robot control actions. A group of these behaviors constitutes a reactive control scheme designed to fulfill simple missions. The paper centers on the description of the Neural-Q_learning based behaviors showing their performance with an underwater robot in a target following task. Real experiments demonstrate the convergence and stability of the learning system, pointing out its suitability for online robot learning. Advantages and limitations are discussed
Resumo:
Reinforcement learning (RL) is a very suitable technique for robot learning, as it can learn in unknown environments and in real-time computation. The main difficulties in adapting classic RL algorithms to robotic systems are the generalization problem and the correct observation of the Markovian state. This paper attempts to solve the generalization problem by proposing the semi-online neural-Q_learning algorithm (SONQL). The algorithm uses the classic Q_learning technique with two modifications. First, a neural network (NN) approximates the Q_function allowing the use of continuous states and actions. Second, a database of the most representative learning samples accelerates and stabilizes the convergence. The term semi-online is referred to the fact that the algorithm uses the current but also past learning samples. However, the algorithm is able to learn in real-time while the robot is interacting with the environment. The paper shows simulated results with the "mountain-car" benchmark and, also, real results with an underwater robot in a target following behavior
Resumo:
This paper presents a hybrid behavior-based scheme using reinforcement learning for high-level control of autonomous underwater vehicles (AUVs). Two main features of the presented approach are hybrid behavior coordination and semi on-line neural-Q_learning (SONQL). Hybrid behavior coordination takes advantages of robustness and modularity in the competitive approach as well as efficient trajectories in the cooperative approach. SONQL, a new continuous approach of the Q_learning algorithm with a multilayer neural network is used to learn behavior state/action mapping online. Experimental results show the feasibility of the presented approach for AUVs
Resumo:
This paper proposes a field application of a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot in cable tracking task. The learning system is characterized by using a direct policy search method for learning the internal state/action mapping. Policy only algorithms may suffer from long convergence times when dealing with real robotics. In order to speed up the process, the learning phase has been carried out in a simulated environment and, in a second step, the policy has been transferred and tested successfully on a real robot. Future steps plan to continue the learning process on-line while on the real robot while performing the mentioned task. We demonstrate its feasibility with real experiments on the underwater robot ICTINEU AUV
Resumo:
Autonomous underwater vehicles (AUV) represent a challenging control problem with complex, noisy, dynamics. Nowadays, not only the continuous scientific advances in underwater robotics but the increasing number of subsea missions and its complexity ask for an automatization of submarine processes. This paper proposes a high-level control system for solving the action selection problem of an autonomous robot. The system is characterized by the use of reinforcement learning direct policy search methods (RLDPS) for learning the internal state/action mapping of some behaviors. We demonstrate its feasibility with simulated experiments using the model of our underwater robot URIS in a target following task
Resumo:
This paper proposes a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot. Although the dominant approach, when using RL, has been to apply value function based algorithms, the system here detailed is characterized by the use of direct policy search methods. Rather than approximating a value function, these methodologies approximate a policy using an independent function approximator with its own parameters, trying to maximize the future expected reward. The policy based algorithm presented in this paper is used for learning the internal state/action mapping of a behavior. In this preliminary work, we demonstrate its feasibility with simulated experiments using the underwater robot GARBI in a target reaching task