996 resultados para Ritualized Fan Behavior
Resumo:
ZnS:Te epilayers with Te concentration from 0.5% to 3.1% were studied by photoluminescence under hydrostatic pressure at 15 K. Two emission bands related to the isolated Te-1 and Te-2 pair isoelectronic centers were observed in the samples with Te concentrations of 0.5% and 0.65%. For the samples with Te concentrations of 1.4% and 3.1%, only the Te-2-related peak was observed. The pressure coefficients of all the Te-1-related bands were found to be unexpectedly much larger than that of the ZnS band gap. The pressure coefficients for all the Te-2-related bands are, however, rather smaller than that of ZnS band gap as usually observed. Analysis based on a Koster-Slater model indicates that an increase of the valence bandwidth with pressure is the main reason for the faster pressure shift of the Te-1 centers, and the huge difference in the pressure behavior of the Te-1 and Te-2 centers is due mainly to the difference in the pressure-induced enhancement of the impurity potential on the Te-1 and Te-2 centers. (C) 2002 American Institute of Physics.
Resumo:
Micrometer-sized spherical glass microspheres were fabricated. CdSeS semiconductor nanometer clusters were incorporated into spherical microcavities. When a single microsphere was excited by a laser beam, the whispering gallery mode resonance of the photoluminescence of CdSeS quantum dots in the spherical microcavities was realized by the multiple total internal reflections at the spherical interface. The coupling of restricted electronic and photonic states was realized.
Resumo:
Hydrogen behavior in unintentionally doped GaN epilayers on sapphire substrates grown by NH3-MBE is investigated. Firstly, we find by using nuclear reaction analysis (NRA) that with increasing hydrogen concentration the background electron concentration increases, which suggests that there exists a hydrogen-related donor in undoped GaN, Secondly, Fourier transform infrared (FTIR) absorption and X-ray photoelectron spectroscopy (XPS) reveal Further that hydrogen atom is bound to nitrogen atom in GaN with a local vibrational mode at about 3211 cm(-1) Hence, it is presumed that the hydrogen-related complex Ga. . .H-N is a hydrogen-related donor candidate partly responsible for high n-type background commonly observed in GaN films. Finally, Raman spectroscopy results of the epilayers show that ill addition to the expected compressive biaxial strain, in some cases GaN films suffer from serious tensile biaxial strain. This anomalous behavior has been well interpreted in terms of interstitial hydrogen lattice dilation. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Electrolyte electroreflectance spectra of the near-surface strained-layer In0.15Ga0.85As/GaAs double single-quantum-well electrode have been studied at different biases in non-aqueous solutions of ferrocene and acetylferrocene. The optical transitions, the Franz-Keldysh oscillations (FKOs) and the quantum confined Stark effects (QCSE) of In0.15Ga0.85As/GaAs quantum well electrodes are analyzed. Electric field strengths at the In0.15Ga0.85As/GaAs interface are calculated in both solutions by a fast Fourier transform analysis of FKOs. A dip is exhibited in the electric field strength versus bias (from 0 to 1.2 V) curve in ferrocene solution. A model concerning the interfacial tunneling transfer of electrons is used to explain the behavior of the electric field. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A novel composite InxGa1-xAs/GaAs/GaAs/AlxGa1-xAs multiple quantum well material with different well widths was studied as a new kind of photoelectrode in a photoelectrochemical cell. The photocurrent spectrum and photocurrent-electrode potential curve were measured in ferrocene nonaqueous solution. Pronounced quantization effects and strong exciton absorption were observed in the photocurrent spectrum. The effects of surface states and interfacial states on the photocurrent-electrode potential curve are discussed. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
The annealing behavior of the hexagonal phase content in cubic GaN (c-GaN) thin films grown on GaAs (001) by MOCVD is reported. C-GaN thin films are grown on GaAs (001) substrates by metalorganic chemical vapor deposition (MOCVD). High temperature annealing is employed to treat the as-grown c-GaN thin films. The characterization of the c-GaN films is investigated by photoluminescence (PL) and Raman scattering spectroscopy. The change conditions of the hexagonal phase content in the metastable c-GaN are reported. There is a boundary layer existing in the c-GaN/GaAs film. When being annealed at high temperature, the intensity of the TOB and LOB phonon modes from the boundary layer weakens while that of the E-2 phonon mode from the hexagonal phase increases. The content change of hexagonal phase has closer relationship with annealing temperature than with annealing time period.
Resumo:
We have measured photoluminescence of ZnSxTe1-x alloys (x > 0.7) at 300 K and under hydrostatic pressure up to 7 GPa. The spectra contain only a broad emission band under excitation of the 406.7 nm line. Its pressure coefficients are 47, 62 and 45 meV/GPa for x = 0.98, 0.92 and 0.79 samples, which are about 26%, 7% and 38% smaller than that of the band gap in the corresponding alloys. The Stokes shifts between emission and absorption of the bands were calculated by fitting the pressure dependence of the emission intensity, being 0.29, 0.48 and 0.13 eV for the three samples, respectively. The small pressure coefficient and large Stokes shift indicate that the emission band observed in our samples may correspond to the Te isoelectronic center in the ZnSxTe1-x alloy.
Resumo:
A systematic investigation of structure and intrinsic magnetic properties of the compounds Sm3Fe29-xTx (T = V and Cr) and their nitrides has been performed. Nitrogenation resulted in remarkable improvements in the saturation magnetization and anisotropy fields at 4.2 K and room temperature. First order magnetization processes are observed at around 5.7 T for Sm3Fe26.7V2.3 and around 2.8 T for Sm3Fe24.0Cr5.0 and Sm3Fe24.0Cr5.0N4, respectively. The spin reorientation of the easy magnetization direction of Sm3Fe26.7V2.3 is observed at around 230 K. As a preliminary result, the maximum remanence B-r of 0.94 T, the coercivity mu(0)H(C) of 0.75 T, and the maximum energy product (BH) of 108.5 kJ/m(3) for the nitride magnet Sm3Fe26.7V2.3N4 are achieved by ball-milling at 293 K.
Resumo:
We investigate the annealing behavior of InAs layers with different thicknesses in a GaAs matrix. The diffusion enhancement by strain, which is well established in strained quantum wells, occurs in InAs/GaAs quantum dots (QDs). A shift of the QD luminescence peak toward higher energies results from this enhanced diffusion. In the case of structures where a significant portion of the strain is relaxed by dislocations, the interdiffusion becomes negligible, and there is a propensity to generate additional dislocations. This results in a decrease of the QD luminescence intensity, and the QD peak energy is weakly affected.
Resumo:
The structural and surface properties of AlInGaN quaternary films grown at different temperatures on GaN templates by metalorganic chemical vapor deposition are investigated. Formation of two quaternary layers is confirmed and the difference between them is pronounced when the growth temperature is increased. The surface is featured with V-shaped pits and cracks, whose characteristics are further found to be strongly dependent on the growth temperature of AlInGaN layers. The two-layer structure is interpreted by taking into account of the strain status in AlInGaN layers. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A behavior model of a photo-diode is presented. The model describes the relationship between photocurrent and incident optical power, and it also illustrates the impact of the reverse bias to the variation of the junction capacitance. With this model, the photo-diode and a CMOS receiver circuit were simulated and designed simultaneously under a universal circuit simulation environment.
Resumo:
We report a period continuously tunable, efficient, mid-infrared optical parametric oscillator (OPO) based on a fan-out periodically poled MgO-doped congruent lithium niobate (PPMgLN). The OPO is pumped by a Nd:YAG laser and a maximum idler output average power of 1.65 W at 3.93 mu m is obtained with a pump average power of 10.5 W, corresponding to the conversion efficiency of about 16% from the pump to the idler. The output spectral properties of the OPO with the fan-out crystal are analyzed. The OPO is continuously tuned over 3.78-4.58 mu m (idler) when fan-out periods are changed from 27.0 to 29.4 mu m. Compared with temperature tuning, fan-out period continuous tuning has faster tuning rate and wider tuning range.
Resumo:
n-ZnO/p-Si heterojunction light-emitting diodes (LEDs) show weak defect-related electroluminescence (EL). In order to analyze the origin of the weak EL, the energy band alignment and interfacial microstructure of ZnO/Si heterojunction are investigated by x-ray photoelectron spectroscopy. The valence band offset (VBO) is determined to be 3.15 +/- 0.15 eV and conduction band offset is -0.90 +/- 0.15 eV, showing a type-II band alignment. The higher VBO means a high potential barrier for holes injected from Si into ZnO, and hence, charge carrier recombination takes place mainly on the Si side rather than the ZnO layer. It is also found that a 2.1 nm thick SiOx interfacial layer is formed at the ZnO/Si interface. The unavoidable SiOx interfacial layer provides to a large number of nonradiative centers at the ZnO/Si interface and gives rise to poor crystallinity in the ZnO films. The weak EL from the n-ZnO/p-Si LEDs can be ascribed to the high ZnO/Si VBO and existence of the SiOx interfacial layer.