975 resultados para Material fatigue
Resumo:
A photonic crystal vertical-cavity-surface-emitting laser ( PC-VCSEL) with a wavelength of about 850 nm was realized. The direct-current electrically-driven PC-VCSELs with a minimum threshold current of 2 mA and a maximum threshold current of 13.5 mA were obtained. We fabricated a series of PC-VCSEL chips whose lattice constants are in the range from 0.5 to 3 mu m with different filling factors, and found that the laser characterization depends on the lattice constant, the filling factor, the size of cavity, etc.
Resumo:
As-grown Fe-doped semi-insulating InP single crystal has been converted into n-type low-resistance material after high temperature annealing. Defects in the InP materials have been studied by conventional Hall effect measurement, thermally stimulated current spectroscopy, deep level transient spectroscopy and X-ray diffraction respectively. The results indicate that Fe atoms in the InP material change from the substitutional to the interstitial sites under thermal activation. Consequently, the InP material loses its deep compensation centers which results in the change in types of conduction. The mechanism and cause of the phenomena have been analyzed through comparison of the sites of Fe atom occupation and activation in doping, diffusion and ion implantation processes of InP.
Resumo:
1.6-1.7 mu m highly strained InGaAs/InGaAsP distributed feedback lasers was grown and fabricated by low pressure mentalorganic chemical vapor deposition. High quality highly strained InGaAs/InP materials were obtained by using strain buffer layer. Four pairs of highly strained quantum wells were used in the devices and carrier blocking layer was used to improve the temperature characteristics of the devices. The uncoated 1.66 mu m and 1.74 mu m lasers with ridge wave guide 3 mu m wide have low threshold current (< 15mA) and high output power (> 14mW at 100mA). In the temperature range from 10 degrees C to 40 degrees C, the characteristic temperature T-0 of the 1.74 mu m laser is 57K, which is comparable to that of the 1.55 mu m-wavelength InGaAsP/InP-DFB laser.
Resumo:
Two-dimensional photonic crystals in near infrared region were fabricated by using the focused ion beam ( FIB) method and the method of electron-beam lithography (EBL) combined with dry etching. Both methods can fabricate perfect crystals, the method of FIB is simple,the other is more complicated. It is shown that the material with the photonic crystal fabricated by FIB has no fluorescence,on the other hand, the small-lattice photonic crystal made by EBL combined with dry etching can enhance the extraction efficiency two folds, though the photonic crystal has some disorder. The mechanisms of the enhanced-emission and the absence of emission are also discussed.
Resumo:
AlxInyGa1-x-yN epilayers have been grown by metalorganic chemical vapor deposition (MOCVD) at different temperatures from 800 to 870degreesC. The incorporation of indium is found to increase with decreasing growth temperature, while the incorporation of Al remains nearly constant. The optical properties of the samples have been investigated by photoluminescence (PL) and time-resolved photoluminescence (TRPL) at different temperatures. The results show that the sample grown at 820 C exhibits the best optical quality for its large PL intensity and the absence of the yellow luminescence. Furthermore the temperature-dependent PL and TRPL of the sample reveals its less exciton localization effect caused by alloy fluctuations. In the scanning electron microscopy measurement, much uniform surface morphology is found for the sample grown at 820degreesC, in good agreement with the PL results, The improvement of AlxInyGa1-x-yN quality is well correlated with the incorporation of indium into AlGaN and the possible mechanism is discussed. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper, we report the fabrication of Si-based double hetero-epitaxial SOI materials Si/gamma-Al2O3/Si. First, single crystalline gamma-Al2O3 (100) insulator films were grown epitaxially on Si(100) by LPCVD, and then, Si(100) epitaxial films were grown on gamma-Al2O3 (100)/Si(100) epi-substrates using a CVD method similar to silicon on sapphire (SOS) epitaxial growth. The Si/gamma-Al2O3 (100)/Si(100) SOI materials are characterized in detail by RHEED, XRD and AES techniques. The results demonstrate that the device-quality novel SOI materials Si/gamma-Al2O3 (100)/Si(100) has been fabricated successfully and can be used for application of MOS device.
Resumo:
The mass spectrum analysis of crystal face (100) and (111) and the photoluminescence analysis of crystal face (100) in the photoelectronic material InP were given. The Hall coefficient, charge carrier concentration and Hall mobility were determined. Experimental results indicate that the pollution of silicon is predominant.
Resumo:
The relations between the gain factor, defined as the ratio of modal gain to material gain, and the optical confinement factor are discussed for the TE and TM modes in slab waveguides. For the TE modes, the gain factor is larger than the optical confinement factor, due to the zigzag propagation of the modal light ray in the core layers. For the TM modes, the existence of a nonzero electric field in the propagation direction results in a more complicated relation of the gain factor and the confinement factor. For an air-Si-SiO2 strong slab waveguide, the numerical results show that the modal gain can be larger than the material gain and the higher-order transverse mode can have an even larger modal gain than the fundamental mode, The efficiency of waveguiding photodetectors can be improved by applying the modal gain or loss characteristics in strong waveguides.
Resumo:
We report on the material growth and fabrication of high-performance 980-nm strained quantum-well lasers employing a hybrid material system consisting of an Al-free InGaAs-InGaAsP active region and AlGaAs cladding layers. The use of AlGaAs cladding instead of InGaP provides potential advantages in flexibility of laser design, simple epitaxial growth, and improvement of surface morphology and laser performance. The as-grown InGaAs-InGaAsP(1.6 eV)-AlGaAs(1.95 eV) lasers achieve a low threshold current density of 150 A/cm(2) (at a cavity length of 1500 mu m), internal quantum efficiency of similar to 95%, and low internal loss of 1.8 cm(-1). Both broad-area and ridge-waveguide laser devices are fabricated. For 100-mu m-wide stripe lasers with a cavity length of 800 Irm, a slope efficiency of 1.05 W/A and a characteristic temperature coefficient (T-0) of 230 K are achieved. The lifetime test demonstrates a reliable performance. The comparison with our fabricated InGaAs-InGaAsP(1.6 eV)-AlGaAs(1.87 eV) lasers and Al-free InGaAs-InGaAsP (1.6 eV)-InGaP lasers are also given and discussed. The selective etching between AlGaAs and InGaAsP is successfully used for the formation of a ridge-waveguide structure. For 4-mu m-wide ridge-waveguide laser devices, a maximum output power of 350 mW is achieved. The fundamental mode output power can be up to 190 mW with a slope efficiency as high as 0.94 W/A.
Resumo:
Radiation-induced electrical changes in both space charge region (SCR) of Si detectors and bulk material (BM) have been studied for samples of diodes and resistors made on Si materials with different initial resistivities. The space charge sign inversion fluence (Phi(inv)) has been found to increase linearly with the initial doping concentration (the reciprocal of the resistivity), which gives improved radiation hardness to Si detectors fabricated from low resistivity material. The resistivity of the BM, on the other hand, has been observed to increase with the neutron fluence and approach a saturation value in the order of hundreds k Omega cm at high fluences, independent of the initial resistivity and material type. However, the fluence (Phi(s)), at which the resistivity saturation starts, increases with the initial doping concentrations and the value of Phi(s) is in the same order of that of Phi(inv) for all resistivity samples. Improved radiation hardness can also be achieved by the manipulation of the space charge concentration (N-eff) in SCR, by selective filling and/or freezing at cryogenic temperatures the charge state of radiation-induced traps, to values that will give a much smaller full depletion voltage. Models have been proposed to explain the experimental data.
Resumo:
Introducing the growth interruption between the InAs deposition and subsequent GaAs growth in self-assembled quantum dot (QD) structures, the material transport process in the InAs layers has been investigated by photoluminescence and transmission electron microscopy measurement. InAs material in structures without misfit dislocations transfers from the wetting layer to QDs corresponding to the red-shift of PL peak energy due to interruption. On the other hand, the PL peak shifts to higher energy in the structures with dislocations. In this case, the misfit dislocations would capture the InAs material from the surrounding wetting layer and coherent islands leading to the reduction of the size of these QDs. The variations in the PL intensity and Linewidth are also discussed.
Resumo:
An apparent defect suppression effect has been observed in InP through an investigation of deep level defects in different semi-insulating (SI) InP materials. Quality improvement of SI-InP based on the defect suppression mechanism is presented.
Resumo:
A compact polarization-insensitive 8x8 arrayed waveguide grating with 100GHz channel spacing at 1.55 mu m is presented on the material of silicon on insulator (SOI). Increasing the epitaxial layer thickness can reduce the birefringence of the waveguide, but the wvaeguide's bend radius also increases at the same time. We choose the SOI wafer with 3.0 mu m epitaxial layer to reduce the device's size and designed the appropriate structure of rib wave-guides to eliminate the polarization dependant wavelength shift. Compared to the other methods of eliminating the polarization dependant wavelength shift, the method is convenient and easy to control the polarization without additional etching process. The index differences between TE0 and TM0 of straight and bend waveguides are 1.4x10(-5) and 3.9x10(-5), respectively. The results showed that the polarization dependant wavelength shift is 0.1nm, and the device size is 1.5x1.0 cm(2).
Resumo:
A new material structure with Al0.22Ga0.78As/In0.15Ga0.85As/GaAs emitter spacer layer and GaAs/In0.15Ga0.85As/GaAs well for resonant tunneling diodes is designed and the corresponding device is fabricated. RTDs DC characteristics are measured at room temperature. Peak-to-valley current ratio (PVCR) is 7.44 for RTD Analysis on these results suggests that the material structure will be helpful to improve the quality, of RTD.
Resumo:
A SOI thenno-optic variable optical attenuator with U-grooves based on a multimode interference coupler principle is fabricated. The dynamic attenuation range is 0 to 29 dB; at the wavelength range between 1510 nm and 1610nm, and the maximum power consumption is only l30mW. Compared to the variable optical attenuator without U-groove, the maximum power consumption decreases more than 230mW