976 resultados para CMOS transistor
Resumo:
The Schottky behaviour of Ni/Au contact on n-GaN was investigated under various annealing conditions by current-voltage (I-V) measurements. A non-linear fitting method was used to extract the contact parameters from the I-V characteristic curves. Experimental results indicate that high quality Schottky contact with a barrier height and ideality factor of 0.86 +/- 0.02 eV and 1.19 +/- 0.02 eV, respectively, can be obtained under 5 min annealing at 600degreesC in N-2 ambience.
Resumo:
The deep centers of high electron mobility transistor (HEMT) and pseudomorphic-HEMT (P-HEMT) functional materials of ultra-high-speed microstructures grown by MBE are investigated using deep level transient spectroscopy (DLTS) technique. DLTS spectra demonstrate that midgap states, having larger concentrations and capture cross sections, are measured in n-AlGaAs layers of HEMT and P-HEMT structures. These states may correlate strongly with oxygen content of n-AlGaAs layer. At the same time, one can observe that the movement of DX center is related to silicon impurity that is induced by the strain in AlGaAs layer of the mismatched AlGaAs/InGaAs/GaAs system of P-HEMT structure. The experimental results also show that DLTS technique may be a tool of optimization design of the practical devices.
Photoluminescence of AlGaAs/InGaAs/GaAs pseudomorphic HEMTs with different thickness of spacer layer
Resumo:
The photoluminescence spectra of the single delta -doped AlGaAs/InGaAs/GaAs pseudomorphic HEMTs with different thickness of spacer layer were studied. There are two peaks in the PL spectra of the structure corresponding to two sub-energy levels of the InGaAs quantum well. It was found that the photoluminescence intensity ratio of the two peaks changes with the spacer thickness of the pseudomorphic HEMTs. The reasons were discussed. The possible use of this phenomenon in optimization of pseudomorphic HEMTs was also proposed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Metamorphic high electron mobility transistor (M-HEMT) structures have been grown on GaAs substrates by molecular beam epitaxy (MBE). Linearly graded and the step-graded InGaAs and InAlAs buffet layers hal e been compared, and TEM, PL and low-temperature Hall have been used to analyze the properties of the buffer layers and the M-HEMT structure. For a single-delta-doped M-HEMT structure with an In0.53Ga0.47As channel layer and a 0.8 mum step-graded InAlAs buffer layer, room-temperature mobility of 9000 cm(2)/V s and a sheet electron density as high as 3.6 x 10(12)/cm(2) are obtained. These results are nearly equivalent to those obtained for the same structure grown on an InP substrate. A basic M-HEMT device with 1 mum gate was fabricated, and g(m) is larger than 400 mS/mm. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The increased emphasis on sub-micron CMOS/SOS devices has placed a demand for high quality thin silicon on sapphire (SOS) films with thickness of the order 100-200 nm. It is demonstrated that the crystalline quality of as-grown thin SOS films by the CVD method can be greatly improved by solid phase epitaxy (SPE) process: implantation of self-silicon ions and subsequent thermal annealing. Subsequent regrowth of this amorphous layer leads to a greater improvement in silicon layer crystallinity and channel carrier mobility, evidenced, respectively, by double crystal X-ray diffraction and electrical measurements. We concluded that the thin SPE SOS films are suitable for application to high-performance CMOS circuitry. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
The semiconductor photonics and optoelectronics which have a great significance in the development of advanced high technology of information systems will be discussed in this paper. The emphasis will be put on the recent research carried out in our laboratory in enhanced luminescence from low dimensional materials such as SiGe/Si and Er-doped Si-rich SiO2/Si and Er-doped SixNy/Si. A ring shape waveguide structure, used to promote the effective absorption coefficient in PIN photodetector for 1.3 mu m wavelength and a resonant cavity enhanced structure, used to improve the quantum efficiency and response in heterostructure photo-transistor (HPT), are also proposed in this paper.
Resumo:
A biosensor based on an H+ ion sensitive field effect transistor (H+-ISFET) and penicillin G acylase has been developed. The response time of the sensor to different concentrations of penicillin G was 30 s. In a 20 mM phosphate buffer at pH 7.0, the linear range of the calibration curve was from 0.5 to 8 mM. The coefficients of variation for three samples with 20 repeated measurements were below 5%. Stability of the sensor could reach about 6 months and more than 1000 runs were performed without a significant decrease of the output value. The sensor was tested for measurement of the penicillin G content in penicillin fermentation broth. Forty samples with low and high concentrations of penicillin G were chosen for the correlation test. The values assayed by the sensor method were compared with the values assayed by HPLC method, the correlation coefficient (r) was 0.9944 and the regression equation was y = 1.034X - 2083.7 respectively. The different measuring methods are discussed in the text. (C) 1998 Published by Elsevier Science S.A. All rights reserved.
Resumo:
Fourier transform photoluminescence measurements were carried out to investigate the optical transitions in InxGa1-xAs/InyAl1-yAs one-side-modulation-doped asymmetric step quantum wells. Samples with electron density n(s) between 0.8 and 5.3 x 10(12) cm(-2) rue studied. Strong recombination involving one to three populated electron subbands with the first heavy-hole subband is observed. Fermi edge singularity (FES) clearly can be observed for some samples. The electron subband energies in the InGaAs/InAlAs step quantum wells were calculated by a self-consistent method, taking into account strain and nonparabolicity effects and the comparison with the experimental data shows a good agreement. Our results can help improve understanding for the application of InGaAs/InAlAs step quantum wells in microelectronic and optoelectronic devices. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The population of the third (n = 3) two-dimensional electron subband of InGaAs/InAlAs modulation-doped structures has been observed by means of Fourier transform photoluminescence (PL). Three well resolved PL peaks centred at 0.737, 0.908, and 0.980eV are observed, which are attributed to the transitions from the lowest three electron subbands to the n = 1 heavy-hole subband. The subband separations clearly exhibiting the features of the stepped quantum well with triangle and square potentials are consistent with numerical calculation. Thanks to the presence of Fermi cutoff, the population ratio of these three subbands can be estimated. Temperature- and excitation-dependent luminescences are also analyzed.
Resumo:
We have observed the population of the third (n=3) two-dimensional electron subband of InGaAs/ InAlAs modulation-doped structures with very dense sheet carrier density by means of Fourier transform photoluminescence (PL). Three well-resolved PL peaks centered at 0.737, 0.908, and 0.980 eV are observed, which are attributed to the recombination transitions from the lowest three electron subbands to the n=1 heavy-hole subband. The subband separations clearly exhibit the features of the stepped quantum well with triangle and square potential, consistent with numerical calculation. Thanks to the presence of the Fermi cutoff, the population ratio of these three subbands can be estimated. Temperature and excitation intensity dependence of the quantum well luminescence intensity is also analyzed. (C) 1997 American Institute of Physics.
Resumo:
本书从光电子器件及其在光通信领域的应用出发,介绍了甚短距离光传输技术的组成、原理、实现方案、技术性能、关键技术以及在高速互连领域内的应用等。本书重点阐述了垂直腔面发射激光器的原理、工艺和特性;10gb/s和40gb/s传输方案的具体实现及其性能指标;甚短距离光传输涉及到的各项关键技术,如新型多模光纤技术、cwdm复用技术、硅探测器技术、高速光电集成(oeic)技术以及相关高速网络技术等。
Resumo:
本书是《中国材料工程大典》中的卷目之一。 信息功能材料是信息科学技术和信息产业发展的基础和先导。21世纪将是以信息产业为核心的知识经济时代,对信息技术和信息资源的竞争将更加激烈。我国电子信息行业2004年完成产品销售收入达26500亿元,多年来已居外贸出口首位,并继续以高出工业发展速度10%的速度发展,已成为世界信息产业大国。加快由信息产业大国向信息产业强国迈进的步伐,是我们广大从事信息技术,特别是信息功能材料工作者义不容辞的责任。希望《中国材料工程大典》中《信息功能材料工程》卷的出版,将有力推动我国信息技术和信息产业的健康发展。 《信息功能材料工程》分上、中、下卷,共设20篇,约600万字。它涉及到信息的获取、传输、存储、显示和处理等主要技术用的材料与器件,是目前我国该领域比较完整的专业工具书。参加这部书编写的有中科院、高校和部分企业的专家教授近200名。参加编写的主要单位有中科院半导体研究所、中科院物理研究所、中科院微电子研究所、中科院上海精密光学机械研究所、中科院上海红外技术物理研究所、中科院长春应用化学研究所、中科院合肥固体物理所、南京大学、清华大学、西安理工大学、北京有色金属研究总院、武汉邮电科学研究院等。历时近3年完稿。由王占国、陈立泉、屠海令任主编并统稿。 本卷各篇不仅全面系统地反映了国外信息功能材料研究领域的现状、最新进展和发展趋势,而且也特别注重我国在该领域的研发和产业化方面取得的成果,力图使其具有实用性、先进性和权威性。本书适合于从事信息功能材料的科研工作者和工程技术人员查阅使用,也可供有关师生参考。
Resumo:
微电子技术与光电子技术紧密结合,相互渗透,必将推进信息技术及相关的高新技术进入新的发展阶段。本书共分为9章,从技术基础和实际应用的角度出发,着重对微电子与光电子集成技术相关的工艺基础、基本原理和关键集成技术进行了详细阐述,主要内容包括光发射器件、光电探测器、光波导器件、光电子专用集成电路、硅基光电子集成回路、甚短距离光传输技术以及微电子与光电子混合集成技术等。 微电子与光电子集成技术的实用化进程,必将为21世纪科学技术的发展作出重大贡献。然而,微电子与光电子集成技术是信息技术发展的一个崭新方向,虽然各项关键技术的发展取得了一定的进步,但还存在诸多难题需要进一步解决和完善。 本书主要为从事集成光电子和光通信等相关技术研究的科研人员提供参考。
Resumo:
We have explored the shared-layer integration fabrication of an resonant-cavity-enhanced p-i-n photodector (RCE- p-i-n-PD) and a single heterojunction bipolar transistor (SHBT) with the same epitaxy grown layer structure. MOCVD growth of the different layer structure for the GaAs based RCE- p-i-n-PD/SHBT require compromises to obtain the best performance of the integrated devices. The SHBT is proposed with super-lattice in the collector, and the structure of the base and the collector of the SHBT is used for the RCE. Up to now, the DC characteristics of the integrated device have been obtained.
Resumo:
A novel ultra low power temperature sensor for UHF RFID tag chip is presented. The sensor consists of a constant pulse generator, a temperature related oscillator, a counter and a bias. Conversion of temperature to digital output is fulfilled by counting the number of the clocks of the temperature related oscillator in a constant pulse period. The sensor uses time domain comparing, where high power consumption bandgap voltage references and traditional ADCs are not needed. The sensor is realized in a standard 0.18 mu m CMOS process, and the area is only 0.2mm(2). The accuracy of the temperature sensor is +/- 1 degrees C after calibration. The power consumption of the sensor is only 0.9 mu W.