928 resultados para Bread Wheat
Resumo:
Plantain (Banana-Musa AAB) is a widely growing but commercially underexploited tropical fruit. This study demonstrates the processing of plantain to flour and extends its use and convenience as a constituent of bread, cake and biscuit. Plantain was peeled, dried and milled to produce flour. Proximate analysis was carried out on the flour to determine the food composition. Drying at temperatures below 70ºC produced light coloured plantain flour. Experiments were carried out to determine the mechanism of drying, the heat and mass transfer coefficients, effect of air velocity, temperature and cube size on the rate of drying of plantain cubes. The drying was diffusion controlled. Pilot scale drying of plantain cubes in a cabinet dryer showed no significant increase of drying rate above 70ºC. In the temperature range found most suitable for plantain drying (ie 60 to 70ºC) the total drying time was adequately predicted using a modified equation based on Fick's Law provided the cube temperature was taken to be about 5ºC below the actual drying air temperature. Studies of baking properties of plantain flour revealed that plantain flour can be substituted for strong wheat flour up to 15% for bread making and up to 50% for madeira cake. A shortcake biscuit was produced using 100% plantain flour and test-marketed. Detailed economic studies showed that the production of plantain fruit and its processing into flour would be economically viable in Nigeria when the flour is sold at the wholesale price of NO.65 per kilogram provided a minimum sale of 25% plantain suckers. There is need for government subsidy if plantain flour is to compete with imported wheat flour. The broader economic benefits accruing from the processing of plantain fruit into flour and its use in bakery products include employment opportunity, savings in foreign exchange and stimulus to home agriculture.
Resumo:
Aim of the work is the implementation of a low temperature reforming (LT reforming) unit downstream the Haloclean pyrolyser in order to enhance the heating value of the pyrolysis gas. Outside the focus of this work was to gain a synthesis gas quality for further use. Temperatures between 400 °C and 500 °C were applied. A commercial pre-reforming catalyst on a nickel basis from Südchemie was chosen for LT reforming. As biogenic feedstock wheat straw has been used. Pyrolysis of wheat straw at 450 °C by means of Haloclean pyrolysis leads to 28% of char, 50% of condensate and 22% of gas. The condensate separates in a water phase and an organic phase. The organic phase is liquid, but contains viscous compounds. These compounds could underlay aging and could lead to solid tars which can cause post processing problems. Therefore, the implementation of a catalytic reformer is not only of interest from an energetic point of view, it is generally interesting for tar conversion purposes after pyrolysis applications. By using a fixed bed reforming unit at 450–490 °C and space velocities about 3000 l/h the pyrolysis gas volume flow could be increased to about 58%. This corresponds to a decrease of the yields of condensates by means of catalysis up to 17%, the yield of char remains unchanged, since pyrolysis conditions are the same. The heating value in the pyrolysis gas could be increased by the factor of 1.64. Hydrogen concentrations up to 14% could be realised.
Resumo:
In our study the application of mint species (spearmint, peppermint ‘Mitcham’ and peppermint ‘Mexian’) and cinnamon was investigated against Fusarium head blight of winter wheat in vitro and in vivo. The effect of crude drugs and the aqueous extract of mint, and the effect of essential oils of mint and cinnamon on mycelial growth were evaluated in lab. On artificial media the crude drug showed higher inhibition than aqueous plant extracts. Cinnamon and spearmint oils e.ectively inhibited mycelia growth. In field trial artificially inoculated winter wheat was treated with the in vitro effective oils under small-plot conditions. The disease incidence was most inhibited by cinnamon oil, applied curative. According to our results the essential oil of cinnamon can be an appropriate candidate for the research of alternative disease control.
Resumo:
The authors identify the firm-specific core competencies that Panera Bread has relied on to achieve a competitive advantage in its business domain. The study illustrates how the company scans the dynamically changing environments and tailors their products and services in accordance with these changes.
Resumo:
This article is protected by copyright. All rights reserved. Acknowledgements: The authors acknowledge support from the Scottish Government Food Land and People programme (RESAS). We would like to thank Lorraine Scobbie and Gary Duncan for technical support. Funding for JP, AWW and 454 pyrosequencing was provided by the Wellcome Trust (grant number 098051).
Resumo:
Funding: Kellogg’s and the Scottish Government Food Land and People Programme.
Resumo:
Background: Research indicates that a diet rich in whole grains may reduce the risk of prevalent chronic diseases, including cardiovascular disease, diabetes, and some cancers, and that risk for these diseases varies by ethnicity. The objective of the current study was to identify major dietary sources of grains and describe their contribution to B vitamins in five ethnic groups. Methods. A cross-sectional mail survey was used to collect data from participants in the Multiethnic Cohort Study in Hawaii and Los Angeles County, United States, from 1993 to 1996. Dietary intake data collected using a quantitative food frequency questionnaire was available for 186,916 participants representing five ethnic groups (African American, Latino, Japanese American, Native Hawaiian and Caucasian) aged 45-75 years. The top sources of grain foods were determined, and their contribution to thiamin, riboflavin, niacin, vitamin B6, and folic acid intakes were analyzed. Results: The top source of whole grains was whole wheat/rye bread for all ethnic-sex groups, followed by popcorn and cooked cereals, except for Native Hawaiian men and Japanese Americans, for whom brown/wild rice was the second top source; major contributors of refined grains were white rice and white bread, except for Latinos. Refined grain foods contributed more to grain consumption (27.1-55.6%) than whole grain foods (7.4-30.8%) among all ethnic-sex groups, except African American women. Grain foods made an important contribution to the intakes of thiamin (30.2-45.9%), riboflavin (23.1-29.2%), niacin (27.1-35.8%), vitamin B6 (22.9-27.5%), and folic acid (23.3-27.7%). Conclusions: This is the first study to document consumption of different grain sources and their contribution to B vitamins in five ethnic groups in the U.S. Findings can be used to assess unhealthful food choices, to guide dietary recommendations, and to help reduce risk of chronic diseases in these populations.
Resumo:
Lactic acid bacteria expolysaccharides (LAB-EPS), in particular those formed from sucrose have the potential to improve food and beverage rheology and enhance their sensory properties potentially replacing or reducing expensive hydrocolloids currently used as improvers in food and beverage industries. Addition of sucrose not only enables EPS formation but also affects organic acid formation, thus influencing the sensory properties of the resulting food/beverage products. The first part of the study the organoleptic modulation of barley malt derived wort fermented using in situ produced bacterial polysaccharides has been investigated. Weisella cibaria MG1 was capable to produce exopolysaccharides during sucrosesupplemented barley malt derived wort fermentation. Even though the strain dominated the (sucrose-supplemented) wort fermentation, it was found to produce EPS (14.4 g l-1) with lower efficiency than in SucMRS (34.6 g l-1). Higher maltose concentration in wort led to the increased formation of oligosaccharide (OS) at the expense of EPS. Additionally, small amounts of organic acids were formed and ethanol remained below 0.5% (v/v). W. cibaria MG1 fermented worts supplemented with 5 or 10% sucrose displayed a shear-thinning behaviour indicating the formation of polymers. This report showed how novel and nutritious LAB fermented wort-base beverage with prospects for further advancements can be formulated using tailored microbial cultures. In the next step, the impact of exopolysaccharide-producing Weissella cibaria MG1 on the ability to improve rheological properties of fermented plant-based milk substitute plant based soy and quinoa grain was evaluated. W. cibaria MG1 grew well in soy milk, exceeding a cell count of log 8 cfu/g within 6 h of fermentation. The presence of W. cibaria MG1 led to a decrease in gelation and fermentation time. EPS isolated from soy yoghurts supplemented with sucrose were higher in molecular weight (1.1 x 108 g/mol vs 6.6 x 107 g/mol), and resulted in reduced gel stiffness (190 ± 2.89 Pa vs 244 ± 15.9 Pa). Soy yoghurts showed typical biopolymer gels structure and the network structure changed to larger pores and less cross-linking in the presence of sucrose and increasing molecular weight of the EPS. In situ investigation of Weissella cibaria MG1 producing EPS on quinoa-based milk was performed. The production of quinoa milk, starting from wholemeal quinoa flour, was optimised to maximise EPS production. On doing that, enzymatic destructuration of protein and carbohydrate components of quinoa milk was successfully achieved applying alpha-amylase and proteases treatments. Fermented wholemeal quinoa milk using Weissella cibaria MG1 showed high viable cell counts (>109 cfu/mL), a pH of 5.16, and significantly higher water holding capacity (WHC, 100 %), viscosity (> 0. 5 Pa s) and exopolysaccharide (EPS) amount (40 mg/L) than the chemically acidified control. High EPS (dextran) concentration in quinoa milk caused earlier aggregation because more EPS occupy more space, and the chenopodin were forced to interact with each other. Direct observation of microstructure in fermented quinoa milk indicated that the network structures of EPS-protein could improve the texture of fermented quinoa milk. Overall, Weissella cibaria MG1 showed favorable technology properties and great potential for further possible application in the development of high viscosity fermented quinoa milk. The last part of the study investigate the ex-situ LAB-EPS (dextran) application compared to other hydrocolloids as a novel food ingredient to compensate for low protein in biscuit and wholemeal wheat flour. Three hydrocolloids, xanthan gum, dextran and hydroxypropyl methylcellulose, were incorporated into bread recipes based on high-protein flours, low-protein flours and coarse wholemeal flour. Hydrocolloid levels of 0–5 % (flour basis) were used in bread recipes to test the water absorption. The quality parameters of dough (farinograph, extensograph, rheofermentometre) and bread (specific volume, crumb structure and staling profile) were determined. Results showed that xanthan had negative impact on the dough and bread quality characteristics. HPMC and dextran generally improved dough and bread quality and showed dosage dependence. Volume of low-protein flour breads were significantly improved by incorporation of 0.5 % of the latter two hydrocolloids. However, dextran outperformed HPMC regarding initial bread hardness and staling shelf life regardless the flour applied in the formulation.
Resumo:
Wheat (Triticum aestivum L.) has a long tradition as a raw material for the production of malt and beer. While breeding and cultivation efforts for barley have been highly successful in creating agronomically and brew- technical optimal specialty cultivars that have become well established as brewing barley varieties, the picture is completely different for brewing wheat. An increasing wheat beer demand results in a rising amount of raw material. Wheat has been - and still is – grown almost exclusively for the baking industry. It is this high demand that defines most of the wheat breeding objectives; and these objectives are generally not favourable in brewing industry. It is of major interest to screen wheat varieties for brewing processability and to give more focus to wheat as a brewing cereal. To obtain fast and reliable predications about the suitability of wheat cultivars a new mathematical method was developed in this work. The method allows a selection based on generally accepted quality characteristics. As selection criteria the parameters raw protein, soluble nitrogen, Kolbach index, extract and viscosity were chosen. During a triannual cultivation series, wheat varieties were evaluated on their suitability for brewing as well as stability to environmental conditions. To gain a fundamental understanding of the complex malting process, microstructural changes were evaluated and visualized by confocal laser scanning and scanning electron microscopy. Furthermore, changes observed in the micrographs were verified and endorsed by metabolic changes using established malt attributes. The degradation and formation of proteins during malting is essential for the final beer quality. To visualise fundamental protein changes taking place during malting, samples of each single process step were analysed and fractioned according their solubility. Protein fractions were analysed using a Lab-on-a-chip technique as well as OFFgel analysis. In general, a different protein distribution of wheat compared to barley or oat could be confirmed. During the malting process a degradation of proteins to small peptides and amino acids could be observed in all four Osborn fractions. Furthermore, in this study a protein profiling was performed to evaluate changes during the mashing process as well as the influence of grist composition. Differences in specific protein peaks and profile were detected for all samples during mashing. This study investigated the suitability of wheat for malting and brewing industry and closed the scientifical gap of amylolytic, cytolytic and proteolytic changes during malting and mashing.
Resumo:
Wheat occupies a principal place in the diet of humans globally, contributing more to our daily calorie and protein intake than any other crop. For this reason, preventing weed induced yield losses in wheat has high significance for world food sustainability. Herbicides and tillage play an important role in weed control, but their use has often unacceptable consequences for humans and the wider environment. Additionally, the range of herbicides effective on key weeds is dwindling due to the evolution of herbicide resistance. Elevating crop competitiveness against weeds, through a combination of wheat breeding and innovative planting design (planting density, row spacing and orientation), has strong potential to reduce weed-induced yield losses in wheat. The last decade of research has provided a solid foundation for the breeding of weed suppressive wheat cultivars, and continued research in this area should be a focus for the future. In the interim, there is cause for optimism that weeds can be effectively suppressed using existing wheat varieties, through careful cultivar selection and choice of planting design. Further research is required to define the nature of relationships between cultivar traits and competitive planting strategies, across diverse weed flora in multiple countries, sites and seasons. Investment in such innovation promises to produce benefits, not only in terms of sustained wheat yields, but also in terms of human and ecosystem health, through ameliorating chemical and sediment contamination, soil degradation, and CO2 pollution.
Resumo:
Any food made from wheat, rice, oats, cornmeal, barley, or another cereal grain is a grain product. Bread, pasta, oatmeal, breakfast cereals, tortillas, and grits are examples. Grains are divided into two subgroups, whole grains and refined grains. Whole grains contain the entire grain kernel—the bran, germ, and endosperm. People who eat whole grains as part of a healthy diet have a reduced risk of some chronic diseases