977 resultados para Art market


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sexton, J. (2008). From Art to Avant Garde? Television, Formalism and the Arts Documentary in 1960's Britain. In L. Mulvey and J. Sexton (Eds.), Experimental British Television (pp.89-105). Manchester: Manchester University Press. RAE2008

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wydział Nauk Społecznych: Instytut Kulturoznawstwa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In pelota matches, bets are made between viewers through a middleman who receives 16% of the finally paid amount. In this paper a description of the way bets are made and an explanation of the existence of those markets is presented. Taking betting markets as a simplified analogy for financial markets we have searched for the explanation in a world where both sides of the market are not different in believes and preferences. Taking observations from actually made bets a preliminary analysis about the biases of those markets is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this paper is to make an example which, first, illustrates Starret’s Spatial Imposibility Theorem, when agents have free mobility; and second, allowes us to get a competitive equilibrium with transportation when agents move only if there is a noticeable difference in utilities that justifies the change of location.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Achieving the goals set by Roll Back Malaria and the Government of Kenya for use of insecticide treated bednets (ITNs) will require that the private retail market for nets and insecticide treatments grow substantially. This paper applies some basic concepts of market structure and pricing to a set of recently-collected retail price data from Kenya in order to answer the question, “How well are Kenyan retail markets for ITNs working?” Methods Data on the availability and prices of ITNs at a wide range of retail outlets throughout Kenya were collected in January 2002, and vendors and manufacturers were interviewed regarding market structure. Findings Untreated nets are manufactured in Kenya by a number of companies and are widely available in large and medium-sized towns. Availability in smaller villages is limited. There is relatively little geographic price variation, and nets can be found at competitive prices in towns and cities. Marketing margins on prices appear to be within normal ranges. No finished nets are imported. Few pre-treated nets or net+treatment combinations are available, with the exception of the subsidized Supanet/Power Tab combination marketed by a donor-funded social marketing project. Conclusions Retail markets for untreated nets in Kenya are well established and appear to be competitive. Markets for treated nets and insecticide treatment kits are not well established. The role of subsidized ITN marketing projects should be monitored to ensure that these projects support, rather than hinder, the development of retail markets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Google AdSense Program is a successful internet advertisement program where Google places contextual adverts on third-party websites and shares the resulting revenue with each publisher. Advertisers have budgets and bid on ad slots while publishers set reserve prices for the ad slots on their websites. Following previous modelling efforts, we model the program as a two-sided market with advertisers on one side and publishers on the other. We show a reduction from the Generalised Assignment Problem (GAP) to the problem of computing the revenue maximising allocation and pricing of publisher slots under a first-price auction. GAP is APX-hard but a (1-1/e) approximation is known. We compute truthful and revenue-maximizing prices and allocation of ad slots to advertisers under a second-price auction. The auctioneer's revenue is within (1-1/e) second-price optimal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose Trade & Cap (T&C), an economics-inspired mechanism that incentivizes users to voluntarily coordinate their consumption of the bandwidth of a shared resource (e.g., a DSLAM link) so as to converge on what they perceive to be an equitable allocation, while ensuring efficient resource utilization. Under T&C, rather than acting as an arbiter, an Internet Service Provider (ISP) acts as an enforcer of what the community of rational users sharing the resource decides is a fair allocation of that resource. Our T&C mechanism proceeds in two phases. In the first, software agents acting on behalf of users engage in a strategic trading game in which each user agent selfishly chooses bandwidth slots to reserve in support of primary, interactive network usage activities. In the second phase, each user is allowed to acquire additional bandwidth slots in support of presumed open-ended need for fluid bandwidth, catering to secondary applications. The acquisition of this fluid bandwidth is subject to the remaining "buying power" of each user and by prevalent "market prices" – both of which are determined by the results of the trading phase and a desirable aggregate cap on link utilization. We present analytical results that establish the underpinnings of our T&C mechanism, including game-theoretic results pertaining to the trading phase, and pricing of fluid bandwidth allocation pertaining to the capping phase. Using real network traces, we present extensive experimental results that demonstrate the benefits of our scheme, which we also show to be practical by highlighting the salient features of an efficient implementation architecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ACT is compared with a particular type of connectionist model that cannot handle symbols and use non-biological operations that cannot learn in real time. This focus continues an unfortunate trend of straw man "debates" in cognitive science. Adaptive Resonance Theory, or ART, neural models of cognition can handle both symbols and sub-symbolic representations, and meets the Newell criteria at least as well as these models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Memories in Adaptive Resonance Theory (ART) networks are based on matched patterns that focus attention on those portions of bottom-up inputs that match active top-down expectations. While this learning strategy has proved successful for both brain models and applications, computational examples show that attention to early critical features may later distort memory representations during online fast learning. For supervised learning, biased ARTMAP (bARTMAP) solves the problem of over-emphasis on early critical features by directing attention away from previously attended features after the system makes a predictive error. Small-scale, hand-computed analog and binary examples illustrate key model dynamics. Twodimensional simulation examples demonstrate the evolution of bARTMAP memories as they are learned online. Benchmark simulations show that featural biasing also improves performance on large-scale examples. One example, which predicts movie genres and is based, in part, on the Netflix Prize database, was developed for this project. Both first principles and consistent performance improvements on all simulation studies suggest that featural biasing should be incorporated by default in all ARTMAP systems. Benchmark datasets and bARTMAP code are available from the CNS Technology Lab Website: http://techlab.bu.edu/bART/.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we introduce the Generalized Equality Classifier (GEC) for use as an unsupervised clustering algorithm in categorizing analog data. GEC is based on a formal definition of inexact equality originally developed for voting in fault tolerant software applications. GEC is defined using a metric space framework. The only parameter in GEC is a scalar threshold which defines the approximate equality of two patterns. Here, we compare the characteristics of GEC to the ART2-A algorithm (Carpenter, Grossberg, and Rosen, 1991). In particular, we show that GEC with the Hamming distance performs the same optimization as ART2. Moreover, GEC has lower computational requirements than AR12 on serial machines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces ART-EMAP, a neural architecture that uses spatial and temporal evidence accumulation to extend the capabilities of fuzzy ARTMAP. ART-EMAP combines supervised and unsupervised learning and a medium-term memory process to accomplish stable pattern category recognition in a noisy input environment. The ART-EMAP system features (i) distributed pattern registration at a view category field; (ii) a decision criterion for mapping between view and object categories which can delay categorization of ambiguous objects and trigger an evidence accumulation process when faced with a low confidence prediction; (iii) a process that accumulates evidence at a medium-term memory (MTM) field; and (iv) an unsupervised learning algorithm to fine-tune performance after a limited initial period of supervised network training. ART-EMAP dynamics are illustrated with a benchmark simulation example. Applications include 3-D object recognition from a series of ambiguous 2-D views.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model which extends the adaptive resonance theory model to sequential memory is presented. This new model learns sequences of events and recalls a sequence when presented with parts of the sequence. A sequence can have repeated events and different sequences can share events. The ART model is modified by creating interconnected sublayers within ART's F2 layer. Nodes within F2 learn temporal patterns by forming recency gradients within LTM. Versions of the ART model like ART I, ART 2, and fuzzy ART can be used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new neural network architecture is introduced for the recognition of pattern classes after supervised and unsupervised learning. Applications include spatio-temporal image understanding and prediction and 3-D object recognition from a series of ambiguous 2-D views. The architecture, called ART-EMAP, achieves a synthesis of adaptive resonance theory (ART) and spatial and temporal evidence integration for dynamic predictive mapping (EMAP). ART-EMAP extends the capabilities of fuzzy ARTMAP in four incremental stages. Stage 1 introduces distributed pattern representation at a view category field. Stage 2 adds a decision criterion to the mapping between view and object categories, delaying identification of ambiguous objects when faced with a low confidence prediction. Stage 3 augments the system with a field where evidence accumulates in medium-term memory (MTM). Stage 4 adds an unsupervised learning process to fine-tune performance after the limited initial period of supervised network training. Each ART-EMAP stage is illustrated with a benchmark simulation example, using both noisy and noise-free data. A concluding set of simulations demonstrate ART-EMAP performance on a difficult 3-D object recognition problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptive Resonance Theory (ART) models are real-time neural networks for category learning, pattern recognition, and prediction. Unsupervised fuzzy ART and supervised fuzzy ARTMAP synthesize fuzzy logic and ART networks by exploiting the formal similarity between the computations of fuzzy subsethood and the dynamics of ART category choice, search, and learning. Fuzzy ART self-organizes stable recognition categories in response to arbitrary sequences of analog or binary input patterns. It generalizes the binary ART 1 model, replacing the set-theoretic: intersection (∩) with the fuzzy intersection (∧), or component-wise minimum. A normalization procedure called complement coding leads to a symmetric: theory in which the fuzzy inter:>ec:tion and the fuzzy union (∨), or component-wise maximum, play complementary roles. Complement coding preserves individual feature amplitudes while normalizing the input vector, and prevents a potential category proliferation problem. Adaptive weights :otart equal to one and can only decrease in time. A geometric interpretation of fuzzy AHT represents each category as a box that increases in size as weights decrease. A matching criterion controls search, determining how close an input and a learned representation must be for a category to accept the input as a new exemplar. A vigilance parameter (p) sets the matching criterion and determines how finely or coarsely an ART system will partition inputs. High vigilance creates fine categories, represented by small boxes. Learning stops when boxes cover the input space. With fast learning, fixed vigilance, and an arbitrary input set, learning stabilizes after just one presentation of each input. A fast-commit slow-recode option allows rapid learning of rare events yet buffers memories against recoding by noisy inputs. Fuzzy ARTMAP unites two fuzzy ART networks to solve supervised learning and prediction problems. A Minimax Learning Rule controls ARTMAP category structure, conjointly minimizing predictive error and maximizing code compression. Low vigilance maximizes compression but may therefore cause very different inputs to make the same prediction. When this coarse grouping strategy causes a predictive error, an internal match tracking control process increases vigilance just enough to correct the error. ARTMAP automatically constructs a minimal number of recognition categories, or "hidden units," to meet accuracy criteria. An ARTMAP voting strategy improves prediction by training the system several times using different orderings of the input set. Voting assigns confidence estimates to competing predictions given small, noisy, or incomplete training sets. ARPA benchmark simulations illustrate fuzzy ARTMAP dynamics. The chapter also compares fuzzy ARTMAP to Salzberg's Nested Generalized Exemplar (NGE) and to Simpson's Fuzzy Min-Max Classifier (FMMC); and concludes with a summary of ART and ARTMAP applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptive Resonance Theory (ART) models are real-time neural networks for category learning, pattern recognition, and prediction. Unsupervised fuzzy ART and supervised fuzzy ARTMAP networks synthesize fuzzy logic and ART by exploiting the formal similarity between tile computations of fuzzy subsethood and the dynamics of ART category choice, search, and learning. Fuzzy ART self-organizes stable recognition categories in response to arbitrary sequences of analog or binary input patterns. It generalizes the binary ART 1 model, replacing the set-theoretic intersection (∩) with the fuzzy intersection(∧), or component-wise minimum. A normalization procedure called complement coding leads to a symmetric theory in which the fuzzy intersection and the fuzzy union (∨), or component-wise maximum, play complementary roles. A geometric interpretation of fuzzy ART represents each category as a box that increases in size as weights decrease. This paper analyzes fuzzy ART models that employ various choice functions for category selection. One such function minimizes total weight change during learning. Benchmark simulations compare peformance of fuzzy ARTMAP systems that use different choice functions.