ART-EMAP: A Neural Network Architecture for Object Recognition by Evidence Accumulation
Data(s) |
14/11/2011
14/11/2011
01/10/1993
|
---|---|
Resumo |
A new neural network architecture is introduced for the recognition of pattern classes after supervised and unsupervised learning. Applications include spatio-temporal image understanding and prediction and 3-D object recognition from a series of ambiguous 2-D views. The architecture, called ART-EMAP, achieves a synthesis of adaptive resonance theory (ART) and spatial and temporal evidence integration for dynamic predictive mapping (EMAP). ART-EMAP extends the capabilities of fuzzy ARTMAP in four incremental stages. Stage 1 introduces distributed pattern representation at a view category field. Stage 2 adds a decision criterion to the mapping between view and object categories, delaying identification of ambiguous objects when faced with a low confidence prediction. Stage 3 augments the system with a field where evidence accumulates in medium-term memory (MTM). Stage 4 adds an unsupervised learning process to fine-tune performance after the limited initial period of supervised network training. Each ART-EMAP stage is illustrated with a benchmark simulation example, using both noisy and noise-free data. A concluding set of simulations demonstrate ART-EMAP performance on a difficult 3-D object recognition problem. Advanced Research Projects Agency (ONR N00014-92-J-4015); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-4100); Air Force Office of Scientific Research (90-0083) |
Identificador | |
Idioma(s) |
en_US |
Publicador |
Boston University Center for Adaptive Systems and Department of Cognitive and Neural Systems |
Relação |
BU CAS/CNS Technical Reports;CAS/CNS-TR-1993-035 |
Direitos |
Copyright 1993 Boston University. Permission to copy without fee all or part of this material is granted provided that: 1. The copies are not made or distributed for direct commercial advantage; 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of BOSTON UNIVERSITY TRUSTEES. To copy otherwise, or to republish, requires a fee and / or special permission. Boston University Trustees |
Palavras-Chave | #ART-EMAP #ARTMAP #Object recognition #Evidence accumulation #Adaptive Resonance Theory (ART) #Neural networks |
Tipo |
Technical Report |