ART-EMAP: A Neural Network Architecture for Learning and Prediction by Evidence Accumulation


Autoria(s): Carpenter, Gail A.; Ross, William D.
Data(s)

14/11/2011

14/11/2011

01/01/1993

Resumo

This paper introduces ART-EMAP, a neural architecture that uses spatial and temporal evidence accumulation to extend the capabilities of fuzzy ARTMAP. ART-EMAP combines supervised and unsupervised learning and a medium-term memory process to accomplish stable pattern category recognition in a noisy input environment. The ART-EMAP system features (i) distributed pattern registration at a view category field; (ii) a decision criterion for mapping between view and object categories which can delay categorization of ambiguous objects and trigger an evidence accumulation process when faced with a low confidence prediction; (iii) a process that accumulates evidence at a medium-term memory (MTM) field; and (iv) an unsupervised learning algorithm to fine-tune performance after a limited initial period of supervised network training. ART-EMAP dynamics are illustrated with a benchmark simulation example. Applications include 3-D object recognition from a series of ambiguous 2-D views.

British Petroleum (89-A-1204); Defense Advanced Research Projects Agency (AFOSR-90-0083, ONR-N00014-92-J-4015); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-4100); Air Force Office of Scientific Research (90-0083)

Identificador

http://hdl.handle.net/2144/1992

Idioma(s)

en_US

Publicador

Boston University Center for Adaptive Systems and Department of Cognitive and Neural Systems

Relação

BU CAS/CNS Technical Reports;CAS/CNS-TR-1993-015

Direitos

Copyright 1993 Boston University. Permission to copy without fee all or part of this material is granted provided that: 1. The copies are not made or distributed for direct commercial advantage; 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of BOSTON UNIVERSITY TRUSTEES. To copy otherwise, or to republish, requires a fee and / or special permission.

Boston University Trustees

Tipo

Technical Report