Fuzzy ART Choice Functions
Data(s) |
14/11/2011
14/11/2011
01/12/1993
|
---|---|
Resumo |
Adaptive Resonance Theory (ART) models are real-time neural networks for category learning, pattern recognition, and prediction. Unsupervised fuzzy ART and supervised fuzzy ARTMAP networks synthesize fuzzy logic and ART by exploiting the formal similarity between tile computations of fuzzy subsethood and the dynamics of ART category choice, search, and learning. Fuzzy ART self-organizes stable recognition categories in response to arbitrary sequences of analog or binary input patterns. It generalizes the binary ART 1 model, replacing the set-theoretic intersection (∩) with the fuzzy intersection(∧), or component-wise minimum. A normalization procedure called complement coding leads to a symmetric theory in which the fuzzy intersection and the fuzzy union (∨), or component-wise maximum, play complementary roles. A geometric interpretation of fuzzy ART represents each category as a box that increases in size as weights decrease. This paper analyzes fuzzy ART models that employ various choice functions for category selection. One such function minimizes total weight change during learning. Benchmark simulations compare peformance of fuzzy ARTMAP systems that use different choice functions. Advanced Research Projects Agency (ONR N00014-92-J-4015); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-4100) |
Identificador | |
Publicador |
Boston University Center for Adaptive Systems and Department of Cognitive and Neural Systems |
Relação |
BU CAS/CNS Technical Reports;CAS/CNS-TR-1993-060 |
Direitos |
Copyright 1993 Boston University. Permission to copy without fee all or part of this material is granted provided that: 1. The copies are not made or distributed for direct commercial advantage; 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of BOSTON UNIVERSITY TRUSTEES. To copy otherwise, or to republish, requires a fee and / or special permission. Boston University Trustees |
Tipo |
Technical Report |