956 resultados para Solid phase extraction (SPE)
Resumo:
Este trabalho objetiva a construção de estruturas robustas e computacionalmente eficientes para a solução do problema de deposição de parafinas do ponto de vista do equilíbrio sólido-líquido. São avaliados diversos modelos termodinâmicos para a fase líquida: equação de estado de Peng-Robinson e os modelos de coeficiente de atividade de Solução Ideal, Wilson, UNIQUAC e UNIFAC. A fase sólida é caracterizada pelo modelo Multisólido. A previsão de formação de fase sólida é inicialmente prevista por um teste de estabilidade termodinâmica. Posteriormente, o sistema de equações não lineares que caracteriza o equilíbrio termodinâmico e as equações de balanço material é resolvido por três abordagens numéricas: método de Newton multivariável, método de Broyden e método Newton-Armijo. Diversos experimentos numéricos foram conduzidos de modo a avaliar os tempos de computação e a robustez frente a diversos cenários de estimativas iniciais dos métodos numéricos para os diferentes modelos e diferentes misturas. Os resultados indicam para a possibilidade de construção de arcabouços computacionais eficientes e robustos, que podem ser empregados acoplados a simuladores de escoamento em dutos, por exemplo.
Resumo:
采用固相微萃取(SPME)高效液相色谱法(HPLC)同时测定了水中苯酚、4-硝基酚、3-甲基酚、2,4-二氯酚、2,4,6-三氯酚、五氯酚等六种酚类化合物的含量.采用ZORBOX SB-C18柱,以甲醇-1%乙酸水溶液为流动相进行梯度洗脱,流速为1.0 mL/min.紫外检测波长为254、280 nm.六种酚类化合物的检出限为0.31~1.90μg/L,加标回收率为88%~103%.该方法操作简单,能快速、准确地检测水中的酚类化合物.
Resumo:
The usage of semiconductor nanostructures is highly promising for boosting the energy conversion efficiency in photovoltaics technology, but still some of the underlying mechanisms are not well understood at the nanoscale length. Ge quantum dots (QDs) should have a larger absorption and a more efficient quantum confinement effect than Si ones, thus they are good candidate for third-generation solar cells. In this work, Ge QDs embedded in silica matrix have been synthesized through magnetron sputtering deposition and annealing up to 800°C. The thermal evolution of the QD size (2 to 10 nm) has been followed by transmission electron microscopy and X-ray diffraction techniques, evidencing an Ostwald ripening mechanism with a concomitant amorphous-crystalline transition. The optical absorption of Ge nanoclusters has been measured by spectrophotometry analyses, evidencing an optical bandgap of 1.6 eV, unexpectedly independent of the QDs size or of the solid phase (amorphous or crystalline). A simple modeling, based on the Tauc law, shows that the photon absorption has a much larger extent in smaller Ge QDs, being related to the surface extent rather than to the volume. These data are presented and discussed also considering the outcomes for application of Ge nanostructures in photovoltaics.PACS: 81.07.Ta; 78.67.Hc; 68.65.-k.
Resumo:
We investigated the thermal evolution of end-of-range (EOR) defects in germanium and their impact on junction thermal stability. After solid-phase epitaxial regrowth of a preamorphized germanium layer, EOR defects exhibiting dislocation loop-like contrast behavior are present. These defects disappear during thermal annealing at 400 °C, while boron electrical deactivation occurs. After the whole defect population vanishes, boron reactivation is observed. These results indicate that germanium self-interstitials, released by EOR defects, are the cause of B deactivation. Unlike in Si, the whole deactivation/reactivation cycle in Ge is found to take place while the maximum active B concentration exceeds its solubility limit. © 2010 American Institute of Physics.
Resumo:
Toxic metals introduced into aquatic environments by human activities accumulation in sediments. A common notion is that the association of metals with acid volatile sulfides (AVS) affords a mechanism for partitioning metals from water to solid phase, thereby reducing biological availability. However, variation in environmental conditions can mobilize the sediment-bound metal and result in adverse environmental impacts. The AVS levels and the effect of AVS on the fate of Cu, Cd, Zn, Ni in sediments in the the Changjiang River, a suboxic river with sandy bottom sediment and the Donghu Lake, a anoxic lake with muddy sediment in China, were compared through aeration, static adsorption and release experiments in laboratory. Sips isotherm equation, kinetic equation and grade ion exchange theory were used to describe the heavy metal adsorb and release process. The results showed that AVS level in the lake sediment are higher than that of the river. Heavy metals in the overlying water can transfer to sediments incessantly as long as the sediment remains undisturbed. The metal release process is mainly related to AVS oxidation in lake sediment while also related to Org-C and Fe-Mn oxyhydroxide oxidation in river sediment. The effect of sulfides on Zn and Ni is high, followed by Cd, and Cu is easy bound to Org-C. AVS plays a major role in controlling metals activity in lake sediment and its presence increase the adsorption capacity both of the lake and river sediments.
Resumo:
The microstructure and its annealing behaviours of a-Si:O:H film prepared by PECVD are investigated in detail using micro-Raman spectroscopy, X-ray photoelectron spectroscopy and Infrared absorption spectroscopy. The results indicate that the as-deposited a-Si:O:H film is structural inhomogeneous, with Si-riched phases surrounded by O-riched phases. The Si-riched phases are found to be nonhydrogenated amorphous silicon (a-Si) clusters, and the O-riched phases SiOx:H (x approximate to 1. 35) are formed by random bonding of Si, O and H atoms. By high-temperature annealing at 1150 degreesC, the SiOx:H (x approximate to 1.35) matrix is shown to be transformed into SiO2 and SiOx ( x approximate to 0.64), during which all of the hydrogen atoms in the film escape and some of silicon atoms are separated from the SiOx:H ( x approximate to 1.35) matrix; The separated silicon atoms are found to be participated in the nucleation and growth processes of solid-phase crystallization of the a-Si clusters, nano-crystalline silicon (ne-Si) is then formed. The microstructure of the annealed film is thereby described with a multi-shell model, in which the ne-Si clusters are embedded in SiOx (x = 0.64) and SiO2. The former is located at the boundaries of the nc-Si clusters, with a thickness comparable with the scale of nc-Si clusters, and forms the transition oxide layer between the ne-Si and the SiO2 matrix.
Resumo:
Carbon ions were implanted into crystal Si to a concentration of (0.6-1.5)at% at room temperature. Some samples were pre-irradiated with S-29(i)+ ions, while others were not pre-irradiated. Then the two kinds of samples were implanted with C-12(+) ions simultaneously, and Si1-xCx alloys were grown by solid phase epitaxy with high-temperature annealing. The effects of preirradiation on the formation of Si1-xCx alloys were studied. If the dose of implanted C ion was less than that for amorphizing Si crystals, the implanted C atoms would like to combine with defects produced during implantation, and then it was difficult for Si1-xCx alloys to form after annealine, at 950 degreesC. Pre-irradiation was advantageous for Si1-xCx alloy formation. With the increase of C ion dose, the damage produced by C ions increased. Pre-irradiation was unfavorable for Si1-xCx, alloy formation. If the implanted C concentration was higher than that for solid phase epitaxy solution, only part of the implanted C atoms form Si1-xCx alloys and the effects of pre-irradiation could be neglected. As the annealing temperature was increased to 1050 degreesC, Si1-xCx alloys in both pre-irradiated and unpreirradiated samples of low C concentration remained, whereas most part of Si1-xCx alloys in samples with high C concentration vanished.
Resumo:
Carbon ions with concentration of (0.6-1.5)% were implanted into silicon crystals at room temperature and Si1-xCx alloys were grown by solid phase epitaxy with high temperature annealing. The formation and characteristics of Si1-xCx alloys under different implanted carbon doses were studied. If the implanted carbon atom concentration was less than 0.6%, carbon atoms would tend to combine with the defects produced during implantation and it was difficult for Si1-xCx alloys to form during annealing at 850-950 degreesC. With the increase of implanted C concentration, almost all implanted carbon atoms would occupy substitution positions to form Si1-xCx alloys, but only part of implanted carbon atoms would occupy the substitution position to form Si1-xCx alloys as the implanted dose increased to 1.5 %. Most Si1-xCx alloy phases would vanish as the annealing temperature was increased higher.
Resumo:
An improved pulsed rapid thermal annealing (PRTA) has been used for the solid-phase crystallization (SPC) of a-Si films prepared by PECVD. The SPC can be completed with time-temperature budgets such as 10 cycles of 60-s 550 degrees C thermal bias/1-s 850 degrees C thermal pulse. The microstructure and surface morphology of the crystallized films are investigated by X-ray diffraction (XRD). The results indicate that this PRTA is a suitable post-crystallization technique for fabricating large-area poly-Si films on low-cost substrate. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Sm3Fe26.7V2.3N4 nitrides and Sm3Fe26.7V2.3Cy carbides have been synthesized by gas-solid phase reaction. Their hard magnetic properties have been investigated by means of additional ball-milling at room temperature. The saturation magnetization of Sm3Fe26.7V2.3N4 almost decreases linearly with increasing ball-milling time t, but that of Sm3Fe26.7V2.3Cy has no obvious change when the ball-milling time increases from t = 1 to 28 h. As a preliminary result, the maximum remanence B-r of 0.94 and 0.88 T, the coercivity mu(0i)H(C) of 0.75 and 0.25 T, and the maximum energy product (BH) of 108.5 and 39.1 kJ/m(3) for their resin-bonded permanent magnets are achieved, respectively, by ball-milling at 293 K. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Using solid-phase regrowth technique, Pd/Ge contact has been made on the GaN layer, and very good ohmic behavior was observed for the contact. The Photoluminescence (PL) spectra for different structures formed by the Pd/Ge contact, GaN layer, sapphire substrate, and mirror were studied, and a defect-assisted transition was found at 450 nm related to Ge impurity. The results show that the microcavity effect strongly influences the PL spectra of the band-gap and defect-assisted transitions.
Resumo:
本论文内容主要分为4个部分:“有机锗化合物抑制Maillard反应的研究”、“Ge-132对体外培养幼鼠胰岛细胞的作用研究”、“PEG/磷酸盐双水相体系中生物大分子分配的研究”和“HPCPC(High Performance Centrifugal Partition Chromatography,高效离心分配色谱)双水相体系对生物大分子分离的研究”。前两部分主要从有机锗化合物防治糖尿病及其并发症的代谢机理和细胞学角度进行研究,本文引入HPCPC和双水相体系分离生物大分子的技术,为进一步阐明有机锗化合物在Maillard反应过程中的作用机理:对双水相体系中生物大分子的分配及HPCPC在双水相体系中分离生物大分子也做了大量的基础性研究,为开发HPCPC的应用作出了有价值的探索工作。本论文的主要创新点归纳如下:一、有机锗化合物对Maillard反应的抑制作用:针对国际上有机锗发展的前沿课题,在国内首先开展了有机锗化合物对Maillard反应抑制作用的研究,取得了有价值的研究结果。1、在模拟体内的生理条件下,研究了不同浓度Ge-132对精氨酸、组氨酸、甘氨酸和缬氨酸对Maillard反应荧光峰强度的影响:不同类型的氨基酸Maillard反应产物结构上的差异和不同浓度有机锗对组氨酸糖化反应420nm处特征吸光度的影响。2、苯丙氨酸是侧链带有苯环的芳香族氨基酸,是一种具有弱的天然荧光的生物小分子,其荧光最大发射位置在281.6nm。由于aillard反应是葡萄糖和氨基酸的-NHR基发生的反应,其反应产物的特征荧光在440nm附近。这两类荧光的发射位置相差较远,相互之间没有影响,因此利用荧光法观察Phe在反应过程中自身的荧光变化和Ge-132对Phe的Maillard反应荧光产物的抑制情况。3、血清白蛋白是哺乳动物体内的重要蛋白质,可作为多种内源性、外源性物质的存储和转运蛋白,其Maillard反应已经被广泛重视,但较复杂的实验条件限制了它的研究。通过观测蛋白质Maillard反应产物特征荧光的变化是一有效的研究方法。BSA的内源性荧光是由肽链色氨酸和酪氨酸残基贡献的,其最大发射位置340nm左右。其Maillard反应产物的特征荧光在440nm附近,这两类荧光发射位置相差较远,基本上没有影响,因此能够通过荧光光谱研究BSA的Maillard反应荧光产物的情况。本文观测了Ge-132对BSA的Maillard反应荧光产物的抑制作用,同时还通过荧光法确定了一个文献中没有的新的反应位点。4、本文研究了具有更高水溶性的一类双有机锗化合物(HO)_2Ge(CHR_1CHR_2COOH)_2.2H_20抑制Maillard反应的特性,结果证明它比Ge-132具有更高的抑制作用,我们通过化合物的构效关系解释了上述作用的机制。5、本文研究了Tb(Ge-132)_3和Eu(Ge-132)_3两种含稀土的配合物对氨基酸、蛋白质Maillard反应的影响,观察了稀土离子对Maillard反应体系的影响,对实验现象作出了合理的解释。二、Ge-132对体外培养幼鼠胰岛细胞的作用为进一步考察有机锗对糖尿病的防治作用,我们与白求恩医大合作,首次观察了Ge-132对体外培养的幼鼠胰岛细胞结构和功能的影响,研究了不同剂量的含锗化合物对幼鼠胰岛细胞分泌胰岛素的作用,认为低浓度的Ge-132对胰岛细胞分泌胰岛素具有明显的促进作用。该部分内容为首次报导。三、PEG/磷酸盐双水相体系中生物大分子分配的研究双水相萃取TPE(Aqueous Two-Phase Extraction)具有下述优点:生物相容性好、界面张力低、能量低、易于工业规模的放大、可以进行连续操作等。本论文系统地研究了各种蛋白质在PEG/磷酸盐体系中的分离情况,如在各种pH条件下,从6.8到9.2,各种分子量的PEG,包括PEGl000,2000,5000,6000,10000,和20000和磷酸盐双水相体系的物化性质,以及对lysozyme(溶菌酶),BSA(牛血清白蛋白),HSA(人血清白蛋白),Hemoglobin(血红蛋白)在各种体系中的分配系数,探讨了各种因素对生物大分子分配的影响。四、HPCPC在双水相体系对生物大分子分离的研究由于荧光光谱法证实了Ge-132对牛血清白蛋白Maillard反应的抑制作用。但对于如何能够分离出糖化产物,达到进行定量表征的目的是我们研究的一个重要内容。九十年代初,由日本研制出一种色谱中新技术HPCPC。HPCPC与传统的液相色谱(LC)和高效液相色谱(HPLC)不同,不需要固体作为支持体。流动相和固定相分别为两种不相混溶的液体,通过离心力的作用使其中一相作为固定相保持在类似多级萃取器的微小分配槽中,另一相作为流动相流经固定相。HPCPC在双水相体系的应用是一种利用多级连续萃取从双水相中分离生物物质的方法它具有运行时间快、高效高选择性,流动相与固定相之间比例可以任意改变,并在任何pH值均可进行正向和反向操作并且实验室规模可一步直接放大到生产规模。它不仅可以作为一种分离的工具,而且也是一种研究生物萃取反应动力学机理,反映热力学与动力学之间相关性的重要方法。本论文中研究了常用的两种双水相体系,利用PEG6000/Dex20000/H_20对BSA和Maillard反应产生的糖化BSA进行了初步分离,取得了一些阶段性结论。另外,通过对各种条件的筛选,选择了具有代表性的lysozyme和BSA,BSA和血红蛋白(Hb)进行HPCPC色谱仪上的分离,研究了色谱分离条件如:转数、流速、pH等对分离效率及理论塔板数的影响,取得了一系列重要的结论。为工业上大规模的生物样品分离提供了重要的参数。
Resumo:
Alternating layers of Si(200 angstrom thick) and Ce(200 angstrom thick) up to 26 layers altogether were deposited by electron evaporation under ultrahigh vacuum conditions on Si(100) substrate held at 150-degrees-C. Isothermal, rapid thermal annealing has been used to react these Ce-Si multilayer films. A variety of analytical techniques has been used to study these multilayer films after annealing, and among these are Auger electron spectroscopy, Rutherford backscattering, X-ray diffraction, and high resolution transmission electron microscopy. Intermixing of these thin Ce-Si multilayer films has occurred at temperatures as low as 150-degrees-C for 2 h, when annealed. Increasing the annealing temperature from 150 to 400-degrees-C for 1 h, CeSi2 forms gradually and the completion of reaction occurs at approximately 300-400-degrees-C. During the formation of CeSi2 from 150-400-degrees-C, there is some evidence for small grains in the selected area diffraction patterns, indicating that CeSi2 crystallites were present in some regions. However, we have no conclusive evidence for the formation of epitaxial CeSi2 layers, only polycrystals were formed when reacted in the solid phase even after rapid thermal anneal at 900-degrees-C for 10 s. The formation mechanism has also been discussed in combining the results of the La-Si system.
Resumo:
A novel pulsed rapid thermal processing (PRTP) method has been used for realizing the solid-phase crystallization of amorphous silicon films prepared by PECVD. The microstructure and surface morphology of the crystallized films are investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM). The results indicate that this PRTP is a suitable post-crystallization technique for fabricating large-area polycrystalline silicon films with good structural qualities such as large grain size, small lattice microstain and smooth surface morphology on low-cost substrate.
Resumo:
\Si1-yCy alloys with carbon composition of 0.5 at.% were successfully grown on n-Si(100) substrate by solid phase epitaxy recraystallization. The result was presented in this paper. With the help of the SiO2 capping layer, rather uniform carbon profile in amorphous Si layer was obtained by dual-energy implantation. Since ion-flow was small and implantation time was long enough, the emergency of beta-SiC was avoided and the dynamic annealing effect was depressed. The pre-amorphization of the Si substrate increased the fraction of the substitutions carbon and the two-step annealing reduced point defects. As a result, Si1-yCy alloys with high quality was recrystallized on Si substrate.