995 resultados para Self-assembled thin films
Resumo:
In this paper, about 30 mu m thick B-doped polycrystalline silicon (poly-Si) thin films were deposited on quartz substrates, n-type single crystalline silicon wafers and p(++)-type poly-Si ribbons by a rapid thermal chemical vapour deposition system in a temperature range from 1000 to 1150 degrees C. Activation energy measurement and room temperature/temperature dependent Hall effect measurement were performed on the poly-Si thin films prepared on the former two kinds of substrates, respectively. It seems that the electrical properties of as-prepared poly-Si thin films could be qualitatively explained by Seto's grain boundary (GB) trapping theory although there is a big difference between our samples and Seto's in gain size and film thickness etc. The experimental results reconfirm that GB itself is a kind of most effective recombination center with trapping level near the midgap and trapping state density in the order of 1012 cm(-2) magnitude. Electron beam induced current measurements on the poly-Si thin films prepared on the poly-Si ribbons also show that severe recombination occurs at the positions of GBs. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
The interband and intraband photocurrent properties of InAs/InAlAs/InP nanostructures have been studied. The doping effect on the photoluminescence properties of the quantum dots and the anisotropy of the quantum wire interband photocurrent properties are presented and discussed. With the help of interband excitation, an intraband photocurrent signal of the InAs nanostructures is observed. With the increase of the interband excitation power, the intraband photocurrent signal first increases and then decreases, which can be explained by the variance of the ground state occupation of the InAs nanostructures and the change of the mobility and lifetime of the electrons. The temperature dependence of the intraband photocurrent signal of the InAs nanostructures is also investigated.
Resumo:
We report on the photoluminescence (PL) properties of InAs/InAlAs/InP quantum wires (QWRs) with various InAs deposited thickness. The PL linewidth of the QWRs decreases with increasing InAs deposited thickness due to the different thicknesses of the QWRs and defects in the samples. The defects and lateral composition modulation of the InAlAs layers play an important role in the temperature-dependent PL properties of the samples. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Polycrystalline silicon thin films were prepared by hot-wire chemical vapor deposition ( HWCVD) on glass at 250 degreesC with W or Ta wire as the catalyzers. The structual and optoelectronic properties as functions of the filament temperature, deposition pressure and the filament-substrate distance were studied, and the optimized polycrystalline silicon thin films were obtained with X-c > 90 % ( X-c denotes the crystalline ratio of the film), crystal grain size about 30-40nm, R-d approximate to 0.8nm/s, sigma(d) about 10(-7) - 10(-6) Omega(-1) cm(-1), Ea(a) approximate to 0.5eV and E-opt less than or equal to 1.3eV.
Resumo:
Self-assembled InAs/GaAs quantum dots covered by the 1-nm InxAl(1-x)As (x = 0.2,0.3) and 3-nm In0.2Ga0.8As combination strain-reducing layer are fabricated, whose height can take up to 30-46 nm. The luminescence emission at a long-wavelength of 1.33 mum and the energy separation between the ground and the first-excited state of 86 meV are observed at room temperature. Furthermore, comparative study proves that the energy separation can increase to 91 meV by multiple stacking.
Resumo:
In the framework of the effective-mass and adiabatic approximations, by setting the effective-mass of electron in the quantum disks (QDs) different from that in the potential barrier material, we make some improvements in the calculation of the electronic energy levels of vertically stacked self-assembled InAs QD. Comparing with the results when an empirical value was adopted as the effective-mass of electron of the system, we can see that the higher levels become heightened. Furthermore, the Stark shifts of the system of different methods are compared. The Stark shifts of holes are also studied. The vertical electric field changes the splitting between the symmetric level and the antisymmetric one for the same angular momentum. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
InAs quantum dots have been grown by solid source molecular beam epitaxy on different matrix to investigate the effect on the structure and optical properties. High density of 1.02 x 10(11) cm(-2) of InAs islands on In0.15Ga0.85As and In0.15Al0.85As underlying layer has been achieved. Atomic force microscopy and photoluminescence spectra show the size evolution of InAs islands on In0.15Ga0.85As underlying layer. A strong 1.3 mum photoluminescence from InAs islands on In0.15Ga0.85As underlying layer and with InGaAs strain-reduced layer has been obtained. Single-mirror light emitting diode structures with InAs quantum dots capped by InGaAs grown on InGaAs layer as active layer were fabricated and the corresponding radiative efficiency was deduced to be as high as 20.5%. Our results provide important information for optimizing the epitaxial structures of 1.3 mum wavelength quantum dots devices. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We have investigated the effect of different cap layers on the photoluminescence (PL) of self-assembled InAs/GaAs quantum dots (QDs). Based upon different cap layers, the wavelength of InAs QDs can be tuned to the range from 1.3 to 1.5 mum. An InAlAs and InGaAs combination layer can enlarge the energy separation between the ground and first excited radiative transition. GaAs/InAs short period superlattices (SLs) make the emission wavelength shift to 1.53 mum. The PL intensity of InAs QDs capped with GaAs/InAs SLs shows an anomalous increase with increasing temperature. We attribute this to the transfer of carriers between different QDs.
Resumo:
Selectively photo-excited C-V spectroscopy has been measured in an In0.5Ga0.5As quantum dots (QDs)-embedded, three barrier-two well heterostructure. By comparing with a theoretical capacitance model, the pure capacitive contribution from In0.5Ga0.5As QDs, due to tunnelling coupling between In0.5Ga0.5As QDs and In0.18Ga0.82As quantum well, has been used to obtain the density of charges from photo-excited In0.5Ga0.5As QDs in a very straightforward manner.
Resumo:
We study the electronic energy levels and probability distribution of vertically stacked self-assembled InAs quantum discs system in the presence of a vertically applied electric field. This field is found to increase the splitting between the symmetric and antisymmetric levels for the same angular momentum. The field along the direction from one disc to another affects the electronic energy levels similarly as that in the opposite direction because the two discs are identical. It is obvious from our calculation that the probability of finding an electron in one disc becomes larger when the field points from this disc to the other one.
Resumo:
A new self-assembled quantum dots system where InGaAs dots are formed on InAlAs wetting layer and embedded in GaAs matrix has been fabricated. The photoluminescence linewidth increases with increasing temperature, which is very different from normal In(Ga)As/GaAs quantum dots. The results are attributed to a higher energy of the wetting layer which breaks the carrier transfer channel between dots and keeps the dots more isolated from each other.
Resumo:
We study the oscillator strengths of the optical transitions of the vertically stacked self-assembled InAs quantum discs. The oscillator strengths change evidently when the two quantum discs are far apart from each other. A vertically applied electric held affects the oscillator strengths severely, while the oscillator strengths change slowly as the radius of one disc increases. We also studied the excitonic energy of the system, including the Coulomb interaction. The excitonic energy increases with the increasing radius of one disc, but decreases as a vertically applied electric field increases.
Resumo:
Zn1-xCdxO crystal thin films with different compositions were prepared on silicon and sapphire substrates by the dc reactive magnetron sputtering technique. X-ray diffraction measurements show that the Zn1-xCdxO films are of completely (002)-preferred orientation for x less than or equal to 0.6. For x = 0.8, the Elm is a mixture of ZnO hexagonal wurtzite crystals and CdO cubic crystals. For pure CdO, it is highly (200) preferential-oriented. Photoluminescence spectrum measurement shows that the Zn1-xCdxO (x = 0.2) thin film has a redshift of 0.14 eV from that of ZnO reported previously.
Resumo:
In this report we have investigated the temperature dependence of photoluminescence (PL) from self-assembled InAs quantum dots (QDs) covered by an InAlAs/InGaAs combination layer. The ground state experiences an abnormal variation of PL linewidth from 15 K up to room temperature. Meanwhile, the PL integrated intensity ratio of the first excited state to the ground state for InAs QDs unexpectedly decreases with increasing temperature, which we attribute to the phonon bottleneck effect. We believe that these experimental results are closely related to the partially coupled quantum dots system and the large energy separation between the ground and the first excited states. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The gamma-Al2O3 films were grown on Si (100) substrates using the sources of TMA (Al (CH3)(3)) and O-2 by very low-pressure chemical vapor deposition (VLP-CVD). It has been found that the gamma-Al2O3 film has a mirror-like surface and the RMS was about 2.5nm. And the orientation relationship was gamma-Al2O3(100)/Si(100). The thickness uniformity of gamma-Al2O3 films for 2-inch epi-wafer was less than 5%. The X-ray diffraction (XRD) and reflection high-energy electron diffraction (RHEED) results show that the crystalline quality of the film was improved after the film was annealed at 1000degreesC in O-2 atmosphere. The high-frequency C-V and leakage current of Al/gamma-Al2O3/Si capacitor were also measured to verify the annealing effect of the film. The results show that the dielectric constant increased from 4 to 7 and the breakdown voltage for 65-nm-thick gamma-Al2O3 film on silicon increases from 17V to 53V.