944 resultados para Sasakian geometry
Resumo:
OBJECTIVE: To identiy left ventricular geometric patterns in hypertensive patients on echocardiography, and to correlate those patterns with casual blood pressure measurements and with the parameters obtained on a 24-hour ambulatory blood pressure monitoring. METHODS: We studied sixty hypertensive patients, grouped according to the Joint National Committee stages of hypertension.. Using the single- and two-dimensional Doppler Echocardiography, we analyzed the left ventricular mass and the geometric patterns through the correlation of left ventricular mass index and relative wall thickness. On ambulatory blood pressure monitoring we assessed the means and pressure loads in the different geometric patterns detected on echocardiography RESULTS: We identified three left ventricular geometric patterns: 1) concentric hypertrophy, in 25% of the patients; 2) concentric remodeling, in 25%; and 3) normal geometry, in 50%. Casual systolic blood pressure was higher in the group with concentric hypertrophy than in the other groups (p=0.001). Mean systolic pressure in the 24h, daytime and nighttime periods was also higher in patients with concentric hypertrophy, as compared to the other groups (p=0.003, p=0.004 and p=0.007). Daytime systolic load and nighttime diastolic load were higher in patients with concentric hypertrophy ( p=0.004 and p=0.01, respectively). CONCLUSIONS: Left ventricular geometric patterns show significant correlation with casual systolic blood pressure, and with means and pressure loads on ambulatory blood pressure monitoring.
Resumo:
PURPOSE: To evaluate 2 left ventricular mass index (LVMI) normality criteria for the prevalence of left ventricular geometric patterns in a hypertensive population ( HT ) . METHODS: 544 essential hypertensive patients, were evaluated by echocardiography, and different left ventricular hypertrophy criteria were applied: 1 - classic : men - 134 g/m² and women - 110 g/m² ; 2- obtained from the 95th percentil of LVMI from a normotensive population (NT). RESULTS: The prevalence of 4 left ventricular geometric patterns, respectively for criteria 1 and 2, were: normal geometry - 47.7% and 39.3%; concentric remodelying - 25.4% and 14.3%; concentric hypertrophy - 18.4% and 27.7% and excentric hypertrophy - 8.8% and 16.7%, which confered abnormal geometry to 52.6% and 60.7% of hypertensive. The comparative analysis between NT and normal geometry hypertensive group according to criteria 1, detected significative stuctural differences,"( *p < 0.05):LVMI- 78.4 ± 1.50 vs 85.9 ±0.95 g/m² *; posterior wall thickness -8.5 ± 0.1 vs 8.9 ± 0.05 mm*; left atrium - 33.3 ± 0.41 vs 34.7 ± 0.30 mm *. With criteria 2, significative structural differences between the 2 groups were not observed. CONCLUSION: The use of a reference population based criteria, increased the abnormal left ventricular geometry prevalence in hypertensive patients and seemed more appropriate for left ventricular hypertrophy detection and risk stratification.
Resumo:
Relatório de estágio de mestrado em Ensino de Matemática no 3.º ciclo do Ensino Básico e no Ensino Secundário
Resumo:
Surgical procedures such as osteotomy and hip replacement involve the cutting of bone with the aid of various manual and powered cutting instruments including manual and powered bone saws. The basic mechanics of bone sawing processes are consistent with most other material sawing processes such as for wood or metal. Frictional rubbing between the blade of the saw and the bone results in the generation of localised heating of the cut bone. Research studies have been carried out which consider the design of the bone saw which deals with specifics of the saw teeth geometry and research which examines the effect of drilling operations on heating of the bone has shown that elevated temperatures will occur from frictional overheating. This overheating in localised areas is known to have an impact on the rate of healing of the bone post operation and the sharpness life of the blade. The purpose of this study was to measure the temperature at three zones at fixed intervals of 3mm, 6mm, and 9mm away from the cutting zone. It should be noted that it was the first time that this measurement technique was used to measure the temperature gradient through the bone specimen thereby establishing the extent to which clinicians are experiencing thermal injury during sawing of bone while using a reciprocating saw. The effect of various cutting feed rate on temperature elevation was also investigated in this research. The results showed that there will be a region of bone at least 9mm either side of the cutting blade experiencing thermal injury as temperatures in this region exceeded the threshold temperature of 44°C for necrosis (cell death).
Resumo:
Abdominal Aortic Aneurysms (AAA) haemorhaging is a life-threatening disease. An aneurysm is a permanent swelling of an artery due to a weakness in its wall. Current surgical repair involves opening the chest or abdomen, gaining temporary vascular control of the aorta and suturing a prosthetic graft to the healthy aorta within the aneurysm itself The outcome of this surgical approach is not perfect, and the quality of life after this repair is impaired by postoperative pain, sexual dysfunction, and a lengthy hospital stay resulting in high health costs. All these negative effects are related to the large incision and extensive tissue dissection. Endovascular grafting is an alternative to the standard surgical method. This treatment is a less invasive method of treating aortic aneurysms. It involves a surgical exposure of the common femoral arteries where the stent graft can be inserted through by an over-the-wire technique. All manipulations are controlled from a remote place by the use of a catheter and this technique avoids the need to directly expose the diseased artery through a large incision or an extensive dissection. The proposed design method outlined in this project is to develop the endovascular approach. The main aim is to design an unitary bifurcated stent graft (1 e- bifurcated graft as a single component) to treat these Abdominal Aortic Aneurysms. This includes the delivery system and deployment mechanism necessary to first accurately position the stent graft across the aneurysm sac and also across the iliac bifurcation, and secondly fix the stent graft in position by using expandable metal stents. Thus, excluding the aneurysm from the circulation and therefore preventing rupture. Miniaturisation is a critical aspect of this design, as the smaller the crimped stent graft the easier to guide through the vascular system to the desired location. Biocompatibility is an important aspect. The preferred materials for this prosthesis are to use Shape Memory Alloys for the stent and a multifilament fabric for the graft. A taper design is applied for the geometry as this gives a favourable flow characteristic and reduced wave reflections. Adequate testing of the stent graft to prove its durability and the ease of the method of deployment is a prerequisite. A bench test facility has being designed and build to replicate the cardiovascular system and the disease in question aortic aneurysms at the iliac bifurcation. The testing here shows the feasibility of the proposed delivery system and the durability of the stent graft across the aneurysm sac. Finally, these endovascular treatments offer the economic advantage of short hospital stays or even treatment as an outpatient, as well as elimination of the need for postoperative intensive care The risk of developing an aneurysm increases with age, that is one of the mam reasons to look for less invasive ways of treating aneurysms. Consequently, there is enormous pressure to develop and use these devices rapidly.
Resumo:
Flanging, die plate, tube forming, T-joint, punch, prehole geometry
Resumo:
Background: Gender can influence post-infarction cardiac remodeling. Objective: To evaluate whether gender influences left ventricular (LV) remodeling and integrin-linked kinase (ILK) after myocardial infarction (MI). Methods: Female and male Wistar rats were assigned to one of three groups: sham, moderate MI (size: 20-39% of LV area), and large MI (size: ≥40% of LV area). MI was induced by coronary occlusion, and echocardiographic analysis was performed after six weeks to evaluate MI size as well as LV morphology and function. Real-time RT-PCR and Western blot were used to quantify ILK in the myocardium. Results: MI size was similar between genders. MI resulted in systolic dysfunction and enlargement of end-diastolic as well as end-systolic dimension of LV as a function of necrotic area size in both genders. Female rats with large MI showed a lower diastolic and systolic dilatation than the respective male rats; however, LV dysfunction was similar between genders. Gene and protein levels of ILK were increased in female rats with moderate and large infarctions, but only male rats with large infarctions showed an altered ILK mRNA level. A negative linear correlation was evident between LV dimensions and ILK expression in female rats with large MI. Conclusions: Post-MI ILK expression is altered in a gender-specific manner, and higher ILK levels found in females may be sufficient to improve LV geometry but not LV function.
Resumo:
Abstract Cardiac remodeling is defined as a group of molecular, cellular and interstitial changes that manifest clinically as changes in size, mass, geometry and function of the heart after injury. The process results in poor prognosis because of its association with ventricular dysfunction and malignant arrhythmias. Here, we discuss the concepts and clinical implications of cardiac remodeling, and the pathophysiological role of different factors, including cell death, energy metabolism, oxidative stress, inflammation, collagen, contractile proteins, calcium transport, geometry and neurohormonal activation. Finally, the article describes the pharmacological treatment of cardiac remodeling, which can be divided into three different stages of strategies: consolidated, promising and potential strategies.
Resumo:
Since the specific heat transfer coefficient (UA) and the volumetric mass transfer coefficient (kLa) play an important role for the design of biotechnological processes, different techniques were developed in the past for the determination of these parameters. However, these approaches often use imprecise dynamic methods for the description of stationary processes and are limited towards scale and geometry of the bioreactor. Therefore, the aim of this thesis was to develop a new method, which overcomes these restrictions. This new approach is based on a permanent production of heat and oxygen by the constant decomposition of hydrogen peroxide in continuous mode. Since the degradation of H2O2 at standard conditions only takes place by the support of a catalyst, different candidates were investigated for their potential (regarding safety issues and reaction kinetic). Manganese-(IV)-oxide was found to be suitable. To compensate the inactivation of MnO2, a continuous process with repeated feeds of fresh MnO2 was established. Subsequently, a scale-up was successfully carried out from 100 mL to a 5 litre glass bioreactor (UniVessel®)To show the applicability of this new method for the characterisation of bioreactors, it was compared with common approaches. With the newly established technique as well as with a conventional procedure, which is based on an electrical heat source, specific heat transfer coefficients were measured in the range of 17.1 – 24.8 W/K for power inputs of about 50 – 70 W/L. However, a first proof of concept regarding the mass transfer showed no constant kLa for different dilution rates up to 0.04 h-1.Based on this, consecutive studies concerning the mass transfer should be made with higher volume flows, due to more even inflow rates. In addition, further experiments are advisable, to analyse the heat transfer in single-use bioreactors and in larger common systems.
Resumo:
Consider a Riemannian manifold equipped with an infinitesimal isometry. For this setup, a unified treatment is provided, solely in the language of Riemannian geometry, of techniques in reduction, linearization, and stability of relative equilibria. In particular, for mechanical control systems, an explicit characterization is given for the manner in which reduction by an infinitesimal isometry, and linearization along a controlled trajectory "commute." As part of the development, relationships are derived between the Jacobi equation of geodesic variation and concepts from reduction theory, such as the curvature of the mechanical connection and the effective potential. As an application of our techniques, fiber and base stability of relative equilibria are studied. The paper also serves as a tutorial of Riemannian geometric methods applicable in the intersection of mechanics and control theory.
Resumo:
We prove the Bogomolov conjecture for a totally degenerate abelian variety A over a function field. We adapt Zhang's proof of the number field case replacing the complex analytic tools by tropical analytic geometry. A key step is the tropical equidistribution theorem for A at the totally degenerate place.
Resumo:
Estudi elaborat a partir d’una estada a l’ Imperial College London, entre juliol i novembre de 2006. En aquest treball s’ha investigat la geometria més apropiada per a la caracterització de la tenacitat a fractura intralaminar de materials compòsits laminats amb teixit. L’objectiu és assegurar la propagació de l’esquerda sense que la proveta falli abans per cap altre mecanisme de dany per tal de permetre la caracterització experimental de la tenacitat a fractura intralaminar de materials compòsits laminats amb teixit. Amb aquesta fi, s’ha dut a terme l’anàlisi paramètrica de diferents tipus de provetes mitjançant el mètode dels elements finits (FE) combinat amb la virtual crack closure technique (VCCT). Les geometries de les provetes analitzades corresponen a la proveta de l’assaig compact tension (CT) i diferents variacions com la extended compact tension (ECT), la proveta widened compact tension (WCT), tapered compact tension (TCT) i doubly-tapered compact tension (2TCT). Com a resultat d’aquestes anàlisis s’han derivat diferents conclusions per obtenir la geometria de proveta més apropiada per a la caracterització de la tenacitat a fractura intralaminar de materials compòsits laminats amb teixit. A més, també s’han dut a terme una sèrie d’assaigs experimentals per tal de validar els resultats de les anàlisis paramètriques. La concordança trobada entre els resultats numèrics i experimentals és bona tot i la presència d’efectes no previstos durant els assaigs experimentals.
Resumo:
Estudi elaborat a partir d’una estada a l'Imperial College of London, Gran Bretanya, entre setembre i desembre 2006. Disposar d'una geometria bona i ben definida és essencial per a poder resoldre eficientment molts dels models computacionals i poder obtenir uns resultats comparables a la realitat del problema. La reconstrucció d'imatges mèdiques permet transformar les imatges obtingudes amb tècniques de captació a geometries en formats de dades numèriques . En aquest text s'explica de forma qualitativa les diverses etapes que formen el procés de reconstrucció d'imatges mèdiques fins a finalment obtenir una malla triangular per a poder‐la processar en els algoritmes de càlcul. Aquest procés s'inicia a l'escàner MRI de The Royal Brompton Hospital de Londres del que s'obtenen imatges per a després poder‐les processar amb les eines CONGEN10 i SURFGEN per a un entorn MATLAB. Aquestes eines les han desenvolupat investigadors del Bioflow group del departament d'enginyeria aeronàutica del Imperial College of London i en l'ultim apartat del text es comenta un exemple d'una artèria que entra com a imatge mèdica i surt com a malla triangular processable amb qualsevol programari o algoritme que treballi amb malles.
Resumo:
Discriminating groups were introduced by G.Baumslag, A.Myasnikov and V.Remeslennikov as an outgrowth of their theory of algebraic geometry over groups. However they have taken on a life of their own and have been an object of a considerable amount of study. In this paper we survey the large array results concerning the class of discriminating groups that have been developed over the past decade.
Resumo:
The classical Lojasiewicz inequality and its extensions for partial differential equation problems (Simon) and to o-minimal structures (Kurdyka) have a considerable impact on the analysis of gradient-like methods and related problems: minimization methods, complexity theory, asymptotic analysis of dissipative partial differential equations, tame geometry. This paper provides alternative characterizations of this type of inequalities for nonsmooth lower semicontinuous functions defined on a metric or a real Hilbert space. In a metric context, we show that a generalized form of the Lojasiewicz inequality (hereby called the Kurdyka- Lojasiewicz inequality) relates to metric regularity and to the Lipschitz continuity of the sublevel mapping, yielding applications to discrete methods (strong convergence of the proximal algorithm). In a Hilbert setting we further establish that asymptotic properties of the semiflow generated by -∂f are strongly linked to this inequality. This is done by introducing the notion of a piecewise subgradient curve: such curves have uniformly bounded lengths if and only if the Kurdyka- Lojasiewicz inequality is satisfied. Further characterizations in terms of talweg lines -a concept linked to the location of the less steepest points at the level sets of f- and integrability conditions are given. In the convex case these results are significantly reinforced, allowing in particular to establish the asymptotic equivalence of discrete gradient methods and continuous gradient curves. On the other hand, a counterexample of a convex C2 function in R2 is constructed to illustrate the fact that, contrary to our intuition, and unless a specific growth condition is satisfied, convex functions may fail to fulfill the Kurdyka- Lojasiewicz inequality.