978 resultados para Orbital resonances
Resumo:
The electronic structure, Zeeman splitting, and Stark shift of In1-yMnyAs1-xNx oblate quantum dots are studied using the ten-band k center dot p model including the sp-d exchange interaction between the carriers and the magnetic ion. The Zeeman splitting of the electron ground states is almost isotropic. The Zeeman splitting of the hole ground states is highly anisotropic, with an anisotropy factor of 918 at B=0.1 T. The Zeeman splittings of some of the electron and hole excited states are also highly anisotropic. It is because of the spin-orbit coupling which couples the spin states with the anisotropic space-wave functions due to the anisotropic shape. It is found that when the magnetic quantum number of total orbital angular momentum is nearly zero, the spin states couple with the space-wave functions very little, and the Zeeman splitting is isotropic. Conversely, if the magnetic quantum number of total orbital angular momentum is not zero, the space-wave functions in the degenerate states are different, and the Zeeman splitting is highly anisotropic. The electron and hole Stark shifts of oblate quantum dots are also highly anisotropic. The decrease of band gap with increasing nitrogen composition is much more obvious in the smaller radius case because the lowest conduction level is increased by the quantum confinement effect and is closer to the nitrogen level. (C) 2007 American Institute of Physics.
Resumo:
The admixture of linear and circular photogalvanic effects and (CPGEs) in AlxGa1-xN/GaN heterostructures has been investigated quantitatively by near-infrared irradiation at room temperature. The spin-based photocurrent that the authors have observed solidly indicates the sizable spin-orbital interaction of the two-dimensional electron gas in the heterostructures. Further analysis shows consistency between studies by optical and magnetic (Shubnikov de-Haas) measurements on the spin-orbital coupling effects among different AlxGa1-xN/GaN heterostructures, indicating that the CPGE measurement is a good way to investigate the spin splitting and the spin polarization in semiconductors. (C) 2007 American Institute of Physics.
Resumo:
The electronic structure, electron g factors and optical properties of InAs quantum ellipsoids are investigated, in the framework of the eight-band effective-mass approximation. It is found that the light-hole states come down in comparison with the heavy-hole states when the spheres are elongated, and become the lowest states of the valence band. Circularly polarized emissions under circularly polarized excitations may have opposite polarization factors to the exciting light. For InAs ellipsoids the length, which is smaller than 35 nm, is still in a strongly quantum-confined regime. The electron g factors of InAs spheres decrease with increasing radius, and are nearly 2 when the radius is very small. The quantization of the electron states quenches the orbital angular momentum of the states. Actually, as some of the three dimensions increase, the electron g factors decrease. As more dimensions increase, the g factors decrease more. The dimensions perpendicular to the direction of the magnetic field affect the g factors more than the other dimension. The magnetic field along the z axis of the crystal structure causes linearly polarized emissions in the spheres, which emit unpolarized light in the absence of magnetic field.
Resumo:
The mode frequencies and field distributions of whispering-gallery (WG)-like modes of square resonators are obtained analytically, which agree very well with the numerical results calculated by the FDTD technique and Pade approximation method. In the analysis, a perfect electric wall for the transverse magnetic mode or perfect magnetic wall for the transverse electric mode is assumed at the diagonals of the square resonators, which not only provides the transverse mode confinement, but also requires the longitudinal mode number to be an even integer. The WG-like modes of square resonators are nondegenerate modes with high-quality factors, which make them suitable for fabricating single-mode low-threshold semiconductor microcavity lasers.
Resumo:
Photoluminescence (PL) was investigated in undoped GaN from 4.8 K to room temperature. The 4.8 K spectra exhibited recombinations of free exciton, donor-acceptor pair (DAP), blue and yellow bands (Ybs). The blue band (BB) was also identified to be a DAP recombination. The YB was assigned to a recombination from deep levels. The energy-dispersive X-ray spectroscopy show that C and O are the main residual impurities in undoped GaN and that C concentration is lower in the epilayers with the stronger BB. The electronic structures of native defects, C and O impurities, and their complexes were calculated using ab initio local-density-functional (LDF) methods with linear muffin-tin-orbital and 72-atomic supercell. The theoretical analyses suggest that the electron transitions from O-N states to C-N and to V-Ga states are responsible for DAP and the BB, respectively, and the electron transitions between the inner levels of the C-N-O-N complex may be responsible for the YB in our samples. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
By using the hole effective-mass Hamiltonian for semiconductors with the wurtzite structure, we have studied the exciton states and optical spectra in CdSe nanocrystallite quantum dots. The intrinsic asymmetry of the hexagonal lattice structure and the effect of spin-orbital coupling (SOC) on the hole states are investigated. It is found that the strong SOC limit is a good approximation for hole states. The selection rules and oscillator strengths for optical transitions between the conduction- and valence-band states are obtained. The Coulomb interaction of exciton states is also taken into account. In order to identify the exciton states, we use the approximation of eliminating the coupling of Gamma(6)(X, Y) with Gamma(1)(Z) states. The results are found to account for most of the important features of the experimental photoluminescence excitation spectra of Norris ct nl. However, if the interaction between Gamma(6)(X, Y) and Gamma(1)(Z) states is ignored, the optically passive P-x state cannot become the ground hole state for small CdSe quantum dots of radius less than 30 Angstrom. It is suggested that the intrinsic asymmetry of the hexagonal lattice structure and the coupling of Gamma(6)(X,Y) with Gamma(1)(Z) states are important for understanding the "dark exciton" effect.
Resumo:
A novel AC driving configuration is proposed for biased semiconductor superlattices, in which the THz driving is provided by an intense bichromatic cw laser in the visible light range. The frequency difference between two components of the laser is resonant with the Bloch oscillation. Thus, multi-photon processes mediated by the conduction (valence) band states lead to dynamical delocalization and localization of the valence (conduction) electrons, and to the formation and collapse of quasi-minibands. Thus, driven Bloch oscillators are predicted to generate persistent THz emission and harmonics of the dipole field, which are tolerant of the exciton and the relaxation effects.
Resumo:
The hole effective-mass Hamiltonian for the semiconductors with wurtzite structure is given. The effective-mass parameters are determined by fitting the valence-band structure near the top with that calculated by the empirical pseudopotential method: The energies and corresponding wave functions are calculated with the obtained effective-mass Hamiltonian for the CdSe quantum spheres, and the energies as functions of sphere radius R are given for the zero spin-orbital coupling (SOC) and finite SOC cases. The energies do not vary as 1/R-2 as the general cases, which is caused by the crystal-field splitting energy and the linear terms in the Hamiltonian. It is found that the ground state is not the optically active S state for the R smaller than 30 Angstrom, in agreement with the experimental results and the "dark exciton'' theory. [S0163-1829(99)01040-1].
Resumo:
The electronic structure of crystalline Y2O3 is investigated by first-principles calculations within the local-density approximation (LDA) of the density-functional theory. Results are presented for the band structure, the total density of states (DOS), the atom-and orbital-resolved partial DOS. effective charges, bond order, and charge-density distributions. Partial covalent character in the Y-O bonding is shown, and the nonequivalency of the two Y sites is demonstrated. The calculated electronic structure is compared with a variety of available experimental data. The total energy of the crystal is calculated as a function of crystal volume. A bulk modulus B of 183 Gpa and a pressure coefficient B' of 4.01 are obtained, which are in good agreement with compression data. An LDA band gap of 4.54 eV at Gamma is obtained which increases with pressure at a rate of dE(g)/dP = 0.012 eV/Gpa at the equilibrium volume. Also investigated are the optical properties of Y2O3 up to a photon energy of 20 eV. The calculated complex dielectric function and electron-energy-loss function are in good agreement with experimental data. A static dielectric constant of epsilon(O)= 3.20 is obtained. It is also found that the bottom of the conduction band consists of a single band, and direct optical transition at Gamma between the top of the valence band and the bottom of the conduction band may be symmetry forbidden.
Resumo:
The linear electro-optic (Pockels) effect of wurtzite gallium nitride (GaN) films and six-period GaN/AlxGa1-xN superlattices with different quantum structures were demonstrated by a polarization-maintaining fiber-optical Mach-Zehnder interferometer system with an incident light wavelength of 1.55 mu m. The samples were prepared on (0001) sapphire substrate by low-temperature metalorganic chemical vapor deposition (MOCVD). The measured coefficients of the GaN/AlxGa1-xN superlattices are much larger than those of bulk material. Taking advantage of the strong field localization due to resonances, GaN/AlxGa1-xN SL can be proposed to engineer the nonlinear responses.
Resumo:
Multicolored optical active planes have been fabricated with magnetron sputter method coupled with selective masking technique. The plane is multilayer structured with Ag nanoparticles and TiO2 thin layer as the building blocks. It was found that the formed multilayer can be readily wavelength multiplexed by simply overlapping several nano-Ag/TiO2 layered structures, each of which may have different surface plasmon resonance wavelength. Unlike high order multiple resonances of large particles each of the multiplexing wavelengths in such a system is separately tunable. Importantly, it reveals that modification of the TiO2 layer thickness generates a fine tuning of the resonance wavelength.
Resumo:
Multicolored optical active planes have been fabricated with magnetron sputter method coupled with selective masking technique. The plane is multilayer structured with Ag nanoparticles and TiO2 thin layer as the building blocks. It was found that the formed multilayer can be readily wavelength multiplexed by simply overlapping several nano-Ag/TiO2 layered structures, each of which may have different surface plasmon resonance wavelength. Unlike high order multiple resonances of large particles each of the multiplexing wavelengths in such a system is separately tunable. Importantly, it reveals that modification of the TiO2 layer thickness generates a fine tuning of the resonance wavelength.
Resumo:
The dressed four- and six-wave mixings in a V-type four-level system are considered. Under two different dressed conditions, two- and three-photon resonant Autler-Townes splittings, accompanied by enhancement and suppression of wave mixing signal, are obtained analytically. Meanwhile, an electromagnetic induced transparency of multi-wave mixing is presented, which shows multiple peaks and asymmetric effects caused by one-photon, two-photon and three-photon resonances, separately. The slow light propagation multiple region of multi-wave mixing signal is also obtained.
Resumo:
The near-threshold highly bound states of all three stable isotopic variants of molecular hydrogen have been studied. Numerous perturbations and unexpected transitions are observed as far as 1cm(-1) just below the second dissociation threshold. This complex structure may arise from a combination of nonadiabatic coupling between B, B', C electronic states, perturbations due to. ne and hyperfine interactions, and strong shape resonances. The perturbed near-threshold states and vibrational continuum exhibit finegrained structure, differing greatly between isotopes because of varying nonadiabatic coupling.