954 resultados para Lineal programming
Resumo:
La clasificación es una de las herramientas necesarias para llevar a cabo un buen reconocimiento de patrones,las redes de neuronas artificiales (RNA), como una sección del área de Inteligencia Artificial (IA), dispone del perceptrón que es un método simple y eficiente para aprender a través de ejemplos a realizar clasificaciones lineales.
Resumo:
Taller 2: Regresión Lineal Simple. Econometría 06216. Elaborado por el profesor Julio César Alonso Cifuentes de la Facultad de Ciencias Administrativas y Económicas – Universidad Icesi. Contiene preguntas y respuestas.
Resumo:
Se reportan en este artículo los primeros resultados de una investigación en curso sobre algunas dificultades de aprendizaje relacionadas con el concepto de función lineal. La investigación está basada en los aportes teóricos de R. Duval sobre registros de representación semiótica y tiene dos propósitos: se trata de detectar las dificultades enfrentadas por los estudiantes para transformar una representación en otra (de una función lineal) y además diseñar una serie actividades didácticas que les ayuden a superar las dificultades detectadas. Los resultados reportados aquí provienen de la aplicación de un cuestionario a nueve estudiantes de segundo semestre de licenciatura del área económico administrativa. Se expone el cuestionario aplicado, las respuestas de los estudiantes y se analizan estas respuestas a la luz de la teoría de Duval.
Resumo:
El presente trabajo de titulación denominado Texto Guía para Docentes enfocado en el bloque de Matemáticas Discretas del Primero B.G.U, ha sido desarrollado con la finalidad de presentar un aporte significativoy de ayuda al docente de Matemáticas de Primero de Bachillerato, anhelando un mejor desenvolvimiento dentro del aula de clase. Este documento está elaborado en base a la legislación educativa ecuatoriana vigente y de los documentos oficiales del Ministerio de Educación, el tema propuesto corresponde al tercer bloque curricular del primer año de Bachillerato General Unificado en la asignatura de Matemáticas. Nuestro trabajo de titulación se compone de tres capítulos. En el capítulo uno, se presenta una síntesis de temas como la evolución de la educación ecuatoriana, los modelos pedagógicos, los métodos de enseñanza, didáctica de la matemática y programación lineal, considerados como base para el desarrollo de la propuesta. En el capítulo dos, se detalla la investigación estadística realizada mediante una encuesta aplicada a docentes de Matemáticas de Primer año de Bachillerato, pertenecientes a la Coordinación Zonal 6 de Educación, Distrito Norte. Los resultados encontrados cimentaron la propuesta de la implementación del texto guía para el aprendizaje de Matemáticas Discretas. En el capítulo tres se elabora la propuesta del texto guía, estructurado en seis guías didácticas, cada una corresponde al desarrollo de una destreza con criterio de desempeñopara el tema planteado. Al final de este capítulo, se detallan conclusiones y recomendaciones dirigidas para el docente de matemáticas.
Resumo:
The aim of this note is to formulate an envelope theorem for vector convex programs. This version corrects an earlier work, “The envelope theorem for multiobjective convex programming via contingent derivatives” by Jiménez Guerra et al. (2010) [3]. We first propose a necessary and sufficient condition allowing to restate the main result proved in the alluded paper. Second, we introduce a new Lagrange multiplier in order to obtain an envelope theorem avoiding the aforementioned error.
Resumo:
Este reporte trata sobre una investigación realizada en la Universidad de Camagüey que se planteó como objetivo la elaboración de un programa analítico de la asignatura álgebra lineal y geometría analítica para la carrera de Ingeniería Mecánica que permitiera elevar la eficiencia del mismo para la solución de problemas y tareas docentes por parte de los estudiantes. Los métodos empleados fueron tanto teóricos como empíricos, mediante ellos y a partir del problema considerado se constató que la concepción existente del Programa Analítico de la asignatura no es adecuado para asegurar el balance entre su nivel de generalización teórica y la solución de problemas con el consecuente desarrollo de habilidades prácticas profesionales e investigativas para garantizar el encargo social. En la investigación se demostró que la articulación teórica y práctica empleando el enfoque sistémico y la teoría de la actividad, permitió dar base teórica a la integración de los temas del álgebra lineal y geometría analítica. Además se rediseñó el programa de la asignatura y su aplicación contribuyó a elevar la eficiencia del proceso de enseñanza-aprendizaje de la misma.
Resumo:
The aim of this paper is to extend the classical envelope theorem from scalar to vector differential programming. The obtained result allows us to measure the quantitative behaviour of a certain set of optimal values (not necessarily a singleton) characterized to become minimum when the objective function is composed with a positive function, according to changes of any of the parameters which appear in the constraints. We show that the sensitivity of the program depends on a Lagrange multiplier and its sensitivity.
Resumo:
Las líneas de productos software son familias de productos que están íntimamente relacionados entre sí, normalmente formados por combinaciones de un conjunto de características software. Generalmente no es factible testar todos los productos de la familia, ya que el número de productos es muy elevado debido a la explosión combinatoria de características. Por este motivo, se han propuesto criterios de cobertura que pretenden probar al menos todas las interacciones entre características sin necesidad de probar todos los productos, por ejemplo todos los pares de características (emph{pairwise coverage}). Además, es deseable testar primero los productos compuestos por un conjunto de características prioritarias. Este problema es conocido como emph{Prioritized Pairwise Test Data Generation}. En este trabajo proponemos una técnica basada en programación lineal entera para generar este conjunto de pruebas priorizado. Nuestro estudio revela que la propuesta basada en programación lineal entera consigue mejores resultados estadísticamente tanto en calidad como en tiempo de computación con respecto a las técnicas existentes para este problema.
Resumo:
El problema de selección de requisitos (o Next Release Problem, NRP) consiste en seleccionar el subconjunto de requisitos que se va a desarrollar en la siguiente versión de una aplicación software. Esta selección se debe hacer de tal forma que maximice la satisfacción de las partes interesadas a la vez que se minimiza el esfuerzo empleado en el desarrollo y se cumplen un conjunto de restricciones. Trabajos recientes han abordado la formulación bi-objetivo de este problema usando técnicas exactas basadas en resolutores SAT y resolutores de programación lineal entera. Ambos se enfrentan a dificultades cuando las instancias tienen un gran tamaño, sin embargo la programación lineal entera (ILP) parece ser más efectiva que los resolutores SAT. En la práctica, no es necesario calcular todas las soluciones del frente de Pareto (que pueden llegar a ser muchas) y basta con obtener un buen número de soluciones eficientes bien distribuidas en el espacio objetivo. Las estrategias de búsqueda basadas en ILP que se han utilizado en el pasado para encontrar un frente bien distribuido en cualquier instante de tiempo solo buscan soluciones soportadas. En este trabajo proponemos dos estrategias basadas en ILP que son capaces de encontrar el frente completo con suficiente tiempo y que, además, tienen la propiedad de aportar un conjunto de soluciones bien distribuido en el frente objetivo en cualquier momento de la búsqueda.
Development of new scenario decomposition techniques for linear and nonlinear stochastic programming
Resumo:
Une approche classique pour traiter les problèmes d’optimisation avec incertitude à deux- et multi-étapes est d’utiliser l’analyse par scénario. Pour ce faire, l’incertitude de certaines données du problème est modélisée par vecteurs aléatoires avec des supports finis spécifiques aux étapes. Chacune de ces réalisations représente un scénario. En utilisant des scénarios, il est possible d’étudier des versions plus simples (sous-problèmes) du problème original. Comme technique de décomposition par scénario, l’algorithme de recouvrement progressif est une des méthodes les plus populaires pour résoudre les problèmes de programmation stochastique multi-étapes. Malgré la décomposition complète par scénario, l’efficacité de la méthode du recouvrement progressif est très sensible à certains aspects pratiques, tels que le choix du paramètre de pénalisation et la manipulation du terme quadratique dans la fonction objectif du lagrangien augmenté. Pour le choix du paramètre de pénalisation, nous examinons quelques-unes des méthodes populaires, et nous proposons une nouvelle stratégie adaptive qui vise à mieux suivre le processus de l’algorithme. Des expériences numériques sur des exemples de problèmes stochastiques linéaires multi-étapes suggèrent que la plupart des techniques existantes peuvent présenter une convergence prématurée à une solution sous-optimale ou converger vers la solution optimale, mais avec un taux très lent. En revanche, la nouvelle stratégie paraît robuste et efficace. Elle a convergé vers l’optimalité dans toutes nos expériences et a été la plus rapide dans la plupart des cas. Pour la question de la manipulation du terme quadratique, nous faisons une revue des techniques existantes et nous proposons l’idée de remplacer le terme quadratique par un terme linéaire. Bien que qu’il nous reste encore à tester notre méthode, nous avons l’intuition qu’elle réduira certaines difficultés numériques et théoriques de la méthode de recouvrement progressif.
Resumo:
Questa Tesi prende in esame tutte le fasi che portano alla realizzazione di un generico videogioco applicandole per creare, dal principio, un gioco 3D con Unity. Se ne analizzerà l'ideazione, la progettazione degli ambienti ma anche degli algoritmi implementati, la produzione e quindi la scrittura del codice per poi terminare con i test effettuati.
Development of new scenario decomposition techniques for linear and nonlinear stochastic programming
Resumo:
Une approche classique pour traiter les problèmes d’optimisation avec incertitude à deux- et multi-étapes est d’utiliser l’analyse par scénario. Pour ce faire, l’incertitude de certaines données du problème est modélisée par vecteurs aléatoires avec des supports finis spécifiques aux étapes. Chacune de ces réalisations représente un scénario. En utilisant des scénarios, il est possible d’étudier des versions plus simples (sous-problèmes) du problème original. Comme technique de décomposition par scénario, l’algorithme de recouvrement progressif est une des méthodes les plus populaires pour résoudre les problèmes de programmation stochastique multi-étapes. Malgré la décomposition complète par scénario, l’efficacité de la méthode du recouvrement progressif est très sensible à certains aspects pratiques, tels que le choix du paramètre de pénalisation et la manipulation du terme quadratique dans la fonction objectif du lagrangien augmenté. Pour le choix du paramètre de pénalisation, nous examinons quelques-unes des méthodes populaires, et nous proposons une nouvelle stratégie adaptive qui vise à mieux suivre le processus de l’algorithme. Des expériences numériques sur des exemples de problèmes stochastiques linéaires multi-étapes suggèrent que la plupart des techniques existantes peuvent présenter une convergence prématurée à une solution sous-optimale ou converger vers la solution optimale, mais avec un taux très lent. En revanche, la nouvelle stratégie paraît robuste et efficace. Elle a convergé vers l’optimalité dans toutes nos expériences et a été la plus rapide dans la plupart des cas. Pour la question de la manipulation du terme quadratique, nous faisons une revue des techniques existantes et nous proposons l’idée de remplacer le terme quadratique par un terme linéaire. Bien que qu’il nous reste encore à tester notre méthode, nous avons l’intuition qu’elle réduira certaines difficultés numériques et théoriques de la méthode de recouvrement progressif.
Resumo:
Pitch Estimation, also known as Fundamental Frequency (F0) estimation, has been a popular research topic for many years, and is still investigated nowadays. The goal of Pitch Estimation is to find the pitch or fundamental frequency of a digital recording of a speech or musical notes. It plays an important role, because it is the key to identify which notes are being played and at what time. Pitch Estimation of real instruments is a very hard task to address. Each instrument has its own physical characteristics, which reflects in different spectral characteristics. Furthermore, the recording conditions can vary from studio to studio and background noises must be considered. This dissertation presents a novel approach to the problem of Pitch Estimation, using Cartesian Genetic Programming (CGP).We take advantage of evolutionary algorithms, in particular CGP, to explore and evolve complex mathematical functions that act as classifiers. These classifiers are used to identify piano notes pitches in an audio signal. To help us with the codification of the problem, we built a highly flexible CGP Toolbox, generic enough to encode different kind of programs. The encoded evolutionary algorithm is the one known as 1 + , and we can choose the value for . The toolbox is very simple to use. Settings such as the mutation probability, number of runs and generations are configurable. The cartesian representation of CGP can take multiple forms and it is able to encode function parameters. It is prepared to handle with different type of fitness functions: minimization of f(x) and maximization of f(x) and has a useful system of callbacks. We trained 61 classifiers corresponding to 61 piano notes. A training set of audio signals was used for each of the classifiers: half were signals with the same pitch as the classifier (true positive signals) and the other half were signals with different pitches (true negative signals). F-measure was used for the fitness function. Signals with the same pitch of the classifier that were correctly identified by the classifier, count as a true positives. Signals with the same pitch of the classifier that were not correctly identified by the classifier, count as a false negatives. Signals with different pitch of the classifier that were not identified by the classifier, count as a true negatives. Signals with different pitch of the classifier that were identified by the classifier, count as a false positives. Our first approach was to evolve classifiers for identifying artifical signals, created by mathematical functions: sine, sawtooth and square waves. Our function set is basically composed by filtering operations on vectors and by arithmetic operations with constants and vectors. All the classifiers correctly identified true positive signals and did not identify true negative signals. We then moved to real audio recordings. For testing the classifiers, we picked different audio signals from the ones used during the training phase. For a first approach, the obtained results were very promising, but could be improved. We have made slight changes to our approach and the number of false positives reduced 33%, compared to the first approach. We then applied the evolved classifiers to polyphonic audio signals, and the results indicate that our approach is a good starting point for addressing the problem of Pitch Estimation.
Resumo:
The Positive Youth Development (PYD) perspective is a strength-based conceptualization of youth. It highlights the importance of mutually beneficial relationships between youth and their environment to develop the “Five Cs”, key assets that include character. Character has long been a subject of programming due to its focus on helping children lead moral, empathic, and prosocial lives. There are, however, many limitations in character research, including poorly operationalized definitions of character; a failure to examine the developmental and broader social context in which character exists; and a lack of evaluation of more practical character programming. The goal of this dissertation was to address these gaps in knowledge and inform the character education programming literature. The first study examined the relationships among age, gender, the school social context, and character. Moral character was negatively associated with grade, and being a girl was positively associated with moral character. The relationships between positive peer interactions at school and character (fairness, integrity) were stronger among students who reported low initial moral character when positive peer interactions was high. In the second study, the Build Character: Build Success Program, a character education program, was evaluated over six months to examine its effects on character behaviours, victimization, and school climate. No program effects were found for students in grades 1 to 3, but a slight decrease in victimization in one experimental school was found for students in grades 4 to 8. This lack of general program effects may be due to the short-term nature of the intervention, which may not have been long enough to result in measurable behaviour change. Implementation data indicated that teachers did not teach all program elements, which also may have influenced the results of the program evaluation. The present dissertation contributes to knowledge about character and its programming by: introducing new measures to operationalize character, discovering developmental patterns in character in school-aged children, highlighting gender differences in character, examining character within its broad social context, and evaluating short-term character education programming.
Resumo:
Code patterns, including programming patterns and design patterns, are good references for programming language feature improvement and software re-engineering. However, to our knowledge, no existing research has attempted to detect code patterns based on code clone detection technology. In this study, we build upon the previous work and propose to detect and analyze code patterns from a collection of open source projects using NiPAT technology. Because design patterns are most closely associated with object-oriented languages, we choose Java and Python projects to conduct our study. The tool we use for detecting patterns is NiPAT, a pattern detecting tool originally developed for the TXL programming language based on the NiCad clone detector. We extend NiPAT for the Java and Python programming languages. Then, we try to identify all the patterns from the pattern report and classify them into several different categories. In the end of the study, we analyze all the patterns and compare the differences between Java and Python patterns.