996 resultados para GaN


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We fabricate and characterize novel LEDs based on InGaN/GaN nanocolumns grown on patterned substrates, leading to the periodically ordered growth of emitters directly producing white light

Relevância:

20.00% 20.00%

Publicador:

Resumo:

•Self- assembled Ga(In)N Nanorods and Nanostructures •Ordered growth of GaN Nanorods: masks issues •Ordered growth of GaN Nanorods: mechanisms •White NanoLEDs

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GaN NCs on Si • PA-MBE • Diameters 20 – 60 nm • Lengths 0.6 – 1.2 µm • Unstrained • PL lines correlate to NC coalescence, EXCEPT the 3.45 eV doublet

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InN layers: MBE growth issues Growth of InN-based thin films: InN/InGaN QWS on GaN Growth of InN-based nanorods ● Self Self-assembled assembled InN InN nanorods nanorods onon different different substrates substrates ● Self-assembled InGaN nanorods ● Broad- Broad-emission emission nanostructures ● Self Self--assembled assembled InGaN InGaN--based based Qdisks Qdisks ● Selective area growth (SAG) of InGaN Qdisks

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The AlGaN/GaN high-electron mobility transistors (HEMTs) have been considered as promising candidates for the next generation of high temperature, high frequency, high-power devices. The potential of GaN-based HEMTs may be improved using an AlInN barrier because of its better lattice match to GaN, resulting in higher sheet carrier densities without piezoelectric polarization [1]. This work has been focused on the study of AlInN HEMTs pulse and DC mode characterization at high temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular beam epitaxy growth of ten-period lattice-matched InAlN/GaN distributed Bragg reflectors (DBRs) with peak reflectivity centered around 400nm is reported including optical and transmission electron microscopy (TEM) measurements [1]. Good periodicity heterostructures with crack-free surfaces were confirmed, but, also a significant residual optical absorption below the bandgap was measured. The TEM characterization ascribes the origin of this problem to polymorfism and planar defects in the GaN layers and to the existence of an In-rich layer at the InAlN/GaN interfaces. In this work, several TEM based techniques have been combined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on plasma-assisted molecular beam epitaxy growth and characterization of InGaN/GaN quantum dots (QDs) for violet/blue applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a wide-bandgap semiconductor, gallium nitride (GaN) is an attractive material for next-generation power devices. To date, the capabilities of GaN-based high electron mobility transistors (HEMTs) have been limited by self-heating effects (drain current decreases due to phonon scattering-induced carrier velocity reductions at high drain fields). Despite awareness of this, attempts to mitigate thermal impairment have been limited due to the difficulties involved with placing high thermal conductivity materials close to heat sources in the device. Heat spreading schemes have involved growth of AIGaN/GaN on single crystal or CVD diamond, or capping of fullyprocessed HEMTs using nanocrystalline diamond (NCD). All approaches have suffered from reduced HEMT performance or limited substrate size. Recently, a "gate after diamond" approach has been successfully demonstrated to improve the thermal budget of the process by depositing NCD before the thermally sensitive Schottky gate and also to enable large-area diamond implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reduced performance in Gallium Nitride (GaN) based high electron mobility transistors (HEMTs) as a result of self-heating has been well-documented. A new approach, termed “diamond-before-gate" is shown to improve the thermal budget of the deposition process and enables large area diamond without degrading the gate metal NCD capped devices had a 20% lower channel temperature at equivalent power dissipation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pH response of GaN/AlInN/AlN/GaN ion-sensitive field effect transistor (ISFET) on Si substrates has been characterized. We analyzed the variation of the surface potential (ΔVsp/ΔpH) and current (ΔIds/ΔpH) with solution pH in devices with the same indium content (17%, in-plane lattice-matched to GaN) and different AlInN thickness (6 nm and 10 nm), and compared with the literature. The shrinkage of the barrier, that has the effect to increase the transconductance of the device, makes the 2-dimensional electron density (2DEG) at the interface very sensitive to changes in the surface. Although the surface potential sensitivity to pH is similar in the two devices, the current change with pH (ΔIds/ΔpH), when biasing the ISFET by a Ag/AgCl reference electrode, is almost 50% higher in the device with 6 nm AlInN barrier, compared to the device with 10 nm barrier. When measuring the current response (ΔIds/ΔpH) without reference electrode, the device with thinner AlInN layer has a larger response than the thicker one, of a factor of 140%, and that current response without reference electrode is only 22% lower than its maximum response obtained using reference electrode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basics of the self-assembled growth of GaN nanorods on Si(111) are reviewed. Morphology differences and optical properties are compared to those of GaN layers grown directly on Si(111). The effects of the growth temperature on the In incorporation in self-assembled InGaN nanorods grown on Si(111) is described. In addition, the inclusion of InGaN quantum disk structures into selfassembled GaN nanorods show clear confinement effects as a function of the quantum disk thickness. In order to overcome the properties dispersion and the intrinsic inhomogeneous nature of the self-assembled growth, the selective area growth of GaN nanorods on both, c-plane and a-plane GaN on sapphire templates, is addressed, with special emphasis on optical quality and morphology differences. The analysis of the optical emission from a single InGaN quantum disk is shown for both polar and non-polar nanorod orientations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

E-beam lithography was used to pattern a titanium mask on a GaN substrate with ordered arrays of nanoholes. This patterned mask served as a template for the subsequent ordered growth of GaN/InGaN nanorods by plasma-assisted molecular beam epitaxy. The mask patterning process was optimized for several holes configurations. The smallest holes were 30 nm in diameter with a pitch (center-to-center distance) of 100 nm only. High quality masks of several geometries were obtained that could be used to grow ordered GaN/InGaN nanorods with full selectivity (growth localized inside the nanoholes only) over areas of hundreds of microns. Although some parasitic InGaN growth occurred between the nanorods during the In incorporation, transmission electron microscopy and photoluminescence measurements demonstrated that these ordered nanorods exhibit high crystal quality and reproducible optical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution monochromated electron energy loss spectroscopy (EELS) at subnanometric spatial resolution and <200 meV energy resolution has been used to assess the valence band properties of a distributed Bragg reflector multilayer heterostructure composed of InAlN lattice matched to GaN. This work thoroughly presents the collection of methods and computational tools put together for this task. Among these are zero-loss-peak subtraction and nonlinear fitting tools, and theoretical modeling of the electron scattering distribution. EELS analysis allows retrieval of a great amount of information: indium concentration in the InAlN layers is monitored through the local plasmon energy position and calculated using a bowing parameter version of Vegard Law. Also a dielectric characterization of the InAlN and GaN layers has been performed through Kramers-Kronig analysis of the Valence-EELS data, allowing band gap energy to be measured and an insight on the polytypism of the GaN layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ordered arrays of III-Nitride nanocolumns are excellent candidates for the fabrication of nano-optoelectronic devices. Different technologies such as e-beam lithography or colloidal lithography, have been used to obtain ordered arrays. All these technologies have in common several processing steps that can affect the crystalline growth of the nanocolumns. In this work, we present a single lithographic step that permits to grow ordered GaN nanocolumns with different geometries. The patterning is based in the use of a focused ion beam with different doses. With this method has been possible to create GaN nanopillars and nanocylinders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The luminescence properties of InxAl1−xN/GaN heterostructures are investigated systematically as a function of the In content (x = 0.067 − 0.208). The recombination between electrons confined in the two-dimensional electron gas and free holes in the GaN template is identified and analyzed. We find a systematic shift of the recombination with increasing In content from about 80 meV to only few meV below the GaN exciton emission. These results are compared with model calculations and can be attributed to the changing band profile and originating from the polarization gradient between InAlN and GaN.