951 resultados para Enzyme Inhibitors
Resumo:
Optimization of a pyrrolidine-based template using structure-based design and physicochemical considerations has provided a development candidate 20b (3082) with submicromolar potency in the HCV replicon and good pharmacokinetic properties.
Resumo:
Introduction of a nitrogen atom into the 6-position of a series of pyrazolo[3,4-b]pyridines led to a dramatic improvement in the potency of GSK-3 inhibition. Rationalisation of the binding mode suggested participation of a putative structural water molecule, which was subsequently confirmed by X-ray crystallography. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Potent 3-anilino-4-arylmaleimide glycogen synthase kinase-3 (GSK-3) inhibitors have been prepared using automated array methodology. A number of these are highly selective, having little inhibitory potency against more than 20 other protein kinases. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Background: Glycogen synthase kinase-3 (GSK-8) is a serine/threonine protein kinase, the activity of which is inhibited by a variety of extracellular stimuli including insulin, growth factors, cell specification factors and cell adhesion. Consequently, inhibition of GSK-3 activity has been proposed to play a role in the regulation of numerous signalling pathways that elicit pleiotropic cellular responses. This report describes the identification and characterisation of potent and selective small molecule inhibitors of GSK-3.
Resumo:
Aryl hydroxylamine derivs. have been synthesized that are some of the most potent inhibitors of hCMV protease prepd. to date (IC50 14-60 nM). Mass spectrometry studies indicate that oxazinone derived hydroxylamines inhibit the enzyme by acylation of Ser132 whereas non-oxazinone derived hydroxylamines appear to inhibit via formation of a sulfinanilide at Cys138.
Resumo:
Hepatitis C is an infection of the liver caused by a pos. single-stranded RNA virus (HCV) which affects 170 million people worldwide. It is responsible for 40-60% of all liver disease and is the major cause of liver transplants in the United States. The HCV NS5B gene encodes the viral RNA-dependent RNA polymerase which is essential for HCV replication. We have previously reported the identification of acylpyrrolidines as potent inhibitors of NS5B; however their activity is attenuated against genotype 1a. The design of improved broader-spectrum compds., capable of effective inhibition of both genotypes 1b and 1a is desirable. An understanding of the binding site and genotype sequence differences was utilized to design compds. with greatly enhanced genotype 1a and 1b potency. Our studies led to the identification of GSK625433, a potent, homochiral inhibitor of these HCV genotypes in both enzyme and sub-genomic replicon cell-based assays. GSK625433 has a good pharmacokinetic profile in pre-clin. animal species, enabling progression to clin. evaluation.