942 resultados para real-time pro-cessing
Resumo:
In this paper we propose a simple model for the coupling behavior of the human spine for an inverse kinematics framework. Our spine model exhibits anatomically correct motions of the vertebrae of virtual mannequins by coupling standard swing and revolute joint models. The adjustement of the joints is made with several simple (in)equality constraints, resulting in a reduction of the solution space dimensionality for the inverse kinematics solver. By reducing the solution space dimensionality to feasible spine shapes, we prevent the inverse kinematics algorithm from providing infeasible postures for the spine.In this paper, we exploit how to apply these simple constraints to the human spine by a strict decoupling of the swing and torsion motion of the vertebrae. We demonstrate the validity of our approach on various experiments.
Resumo:
BACKGROUND: Control of brucellosis in livestock, wildlife and humans depends on the reliability of the methods used for detection and identification of bacteria. In the present study, we describe the evaluation of the recently established real-time PCR assay based on the Brucella-specific insertion sequence IS711 with blood samples from 199 wild boars (first group of animals) and tissue samples from 53 wild boars (second group of animals) collected in Switzerland. Results from IS711 real-time PCR were compared to those obtained by bacterial isolation, Rose Bengal Test (RBT), competitive ELISA (c-ELISA) and indirect ELISA (i-ELISA). RESULTS: In the first group of animals, IS711 real-time PCR detected infection in 11.1% (16/144) of wild boars that were serologically negative. Serological tests showed different sensitivities [RBT 15.6%, c-ELISA 7.5% and i-ELISA 5.5%] and only 2% of blood samples were positive with all three tests, which makes interpretation of the serological results very difficult. Regarding the second group of animals, the IS711 real-time PCR detected infection in 26% of animals, while Brucella spp. could be isolated from tissues of only 9.4% of the animals. CONCLUSION: The results presented here indicate that IS711 real-time PCR assay is a specific and sensitive tool for detection of Brucella spp. infections in wild boars. For this reason, we propose the employment of IS711 real-time PCR as a complementary tool in brucellosis screening programs and for confirmation of diagnosis in doubtful cases.
Resumo:
In this paper we present a hybrid method to track human motions in real-time. With simplified marker sets and monocular video input, the strength of both marker-based and marker-free motion capturing are utilized: A cumbersome marker calibration is avoided while the robustness of the marker-free tracking is enhanced by referencing the tracked marker positions. An improved inverse kinematics solver is employed for real-time pose estimation. A computer-visionbased approach is applied to refine the pose estimation and reduce the ambiguity of the inverse kinematics solutions. We use this hybrid method to capture typical table tennis upper body movements in a real-time virtual reality application.
Resumo:
Enzootic pneumonia (EP) of pigs, caused by Mycoplasma hyopneumoniae has been a notifiable disease in Switzerland since May 2003. The diagnosis of EP has been based on multiple methods, including clinical, bacteriological and epidemiological findings as well as pathological examination of lungs (mosaic diagnosis). With the recent development of a real-time PCR (rtPCR) assay with 2 target sequences a new detection method for M. hyopneumoniae became available. This assay was tested for its applicability to nasal swab material from live animals. Pigs from 74 herds (average 10 pigs per herd) were tested. Using the mosaic diagnosis, 22 herds were classified as EP positive and 52 as EP negative. From the 730 collected swab samples we were able to demonstrate that the rtPCR test was 100% specific. In cases of cough the sensitivity on herd level of the rtPCR is 100%. On single animal level and in herds without cough the sensitivity was lower. In such cases, only a positive result would be proof for an infection with M. hyopneumoniae. Our study shows that the rtPCR on nasal swabs from live pigs allows a fast and accurate diagnosis in cases of suspected EP.
Resumo:
In order to improve the diagnosis of enzootic pneumonia (EP) in pigs two real-time polymerase chain reaction (rtPCR) assays for the detection of Mycoplasma hyopneumoniae in bronchial swabs from lung necropsies were established and validated in parallel. As a gold standard, the current "mosaic diagnosis" was taken, including epidemiological tracing, clinical signs, macro- and histopathological lesions of the lungs and immunofluorescence. One rtPCR is targeting a repeated DNA element of the M. hyopneumoniae genome (REP assay), the other a putative ABC transporter gene (ABC assay). Both assays were shown to be specific for M. hyopneumoniae and did not cross react with other bacteria and mollicutes from pig. With material from pigs of defined EP-negative farms the two assays showed to be 100% specific. When testing lungs from pig farms with EP, the REP assay detected 50% and the ABC assay 90% of the farms as positive. Both tests together detected all positive farms. Within a positive herd the two assays tested similarly with on average over 90% of the lung samples analysed from a single farm showing positive scores. A series of samples with suspicion of EP and samples from pigs with diseases other than respiratory taken from current routine diagnostic was assayed. None of the assays showed false positive results. The sensitivities in this sample group were 50% for the REP and 70% for the ABC assays and for both assays together 85%. The two assays run in parallel are therefore a valuable tool for the improvement of the current diagnosis of EP.
Resumo:
This paper addresses the problem of service development based on GSM handset signaling. The aim is to achieve this goal without the participation of the users, which requires the use of a passive GSM receiver on the uplink. Since no tool for GSM uplink capturing was available, we developed a new method that can synchronize to multiple mobile devices by simply overhearing traffic between them and the network. Our work includes the implementation of modules for signal recovery, message reconstruction and parsing. The method has been validated against a benchmark solution on GSM downlink and independently evaluated on uplink channels. Initial evaluations show up to 99% success rate in message decoding, which is a very promising result. Moreover, we conducted measurements that reveal insights on the impact of signal power on the capturing performance and investigate possible reactive measures.
Resumo:
Wireless Mesh Networks (WMNs) are increasingly deployed to enable thousands of users to share, create, and access live video streaming with different characteristics and content, such as video surveillance and football matches. In this context, there is a need for new mechanisms for assessing the quality level of videos because operators are seeking to control their delivery process and optimize their network resources, while increasing the user’s satisfaction. However, the development of in-service and non-intrusive Quality of Experience assessment schemes for real-time Internet videos with different complexity and motion levels, Group of Picture lengths, and characteristics, remains a significant challenge. To address this issue, this article proposes a non-intrusive parametric real-time video quality estimator, called MultiQoE that correlates wireless networks’ impairments, videos’ characteristics, and users’ perception into a predicted Mean Opinion Score. An instance of MultiQoE was implemented in WMNs and performance evaluation results demonstrate the efficiency and accuracy of MultiQoE in predicting the user’s perception of live video streaming services when compared to subjective, objective, and well-known parametric solutions.
Resumo:
The COSMIC-2 mission is a follow-on mission of the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) with an upgraded payload for improved radio occultation (RO) applications. The objective of this paper is to develop a near-real-time (NRT) orbit determination system, called NRT National Chiao Tung University (NCTU) system, to support COSMIC-2 in atmospheric applications and verify the orbit product of COSMIC. The system is capable of automatic determinations of the NRT GPS clocks and LEO orbit and clock. To assess the NRT (NCTU) system, we use eight days of COSMIC data (March 24-31, 2011), which contain a total of 331 GPS observation sessions and 12 393 RO observable files. The parallel scheduling for independent GPS and LEO estimations and automatic time matching improves the computational efficiency by 64% compared to the sequential scheduling. Orbit difference analyses suggest a 10-cm accuracy for the COSMIC orbits from the NRT (NCTU) system, and it is consistent as the NRT University Corporation for Atmospheric Research (URCA) system. The mean velocity accuracy from the NRT orbits of COSMIC is 0.168 mm/s, corresponding to an error of about 0.051 μrad in the bending angle. The rms differences in the NRT COSMIC clock and in GPS clocks between the NRT (NCTU) and the postprocessing products are 3.742 and 1.427 ns. The GPS clocks determined from a partial ground GPS network [from NRT (NCTU)] and a full one [from NRT (UCAR)] result in mean rms frequency stabilities of 6.1E-12 and 2.7E-12, respectively, corresponding to range fluctuations of 5.5 and 2.4 cm and bending angle errors of 3.75 and 1.66 μrad .
Resumo:
BACKGROUND: Few reports of the utilization of an accurate, cost-effective means for measuring HPV oncogene transcripts have been published. Several papers have reported the use of relative quantitation or more expensive Taqman methods. Here, we report a method of absolute quantitative real-time PCR utilizing SYBR-green fluorescence for the measurement of HPV E7 expression in cervical cytobrush specimens. RESULTS: The construction of a standard curve based on the serial dilution of an E7-containing plasmid was the key for being able to accurately compare measurements between cervical samples. The assay was highly reproducible with an overall coefficient of variation of 10.4%. CONCLUSION: The use of highly reproducible and accurate SYBR-based real-time polymerase chain reaction (PCR) assays instead of performing Taqman-type assays allows low-cost, high-throughput analysis of viral mRNA expression. The development of such assays will help in refining the current screening programs for HPV-related carcinomas.
Resumo:
The Personal Health Assistant Project (PHA) is a pilot system implementation sponsored by the Kozani Region Governors’ Association (KRGA) and installed in one of the two major public hospitals of the city of Kozani. PHA is intended to demonstrate how a secure, networked, multipurpose electronic health and food benefits digital signage system can transform common TV sets inside patient homes or hospital rooms into health care media players and facilitate information sharing and improve administrative efficiency among private doctors, public health care providers, informal caregivers, and nutrition program private companies, while placing individual patients firmly in control of the information at hand. This case evaluation of the PHA demonstration is intended to provide critical information to other decision makers considering implementing PHA or related digital signage technology at other institutions and public hospitals around the globe.
Resumo:
The previously described Nc5-specific PCR test for the diagnosis of Neospora caninum infections was used to develop a quantitative PCR assay which allows the determination of infection intensities within different experimental and diagnostic sample groups. The quantitative PCR was performed by using a dual fluorescent hybridization probe system and the LightCycler Instrument for online detection of amplified DNA. This assay was successfully applied for demonstrating the parasite proliferation kinetics in organotypic slice cultures of rat brain which were infected in vitro with N. caninum tachyzoites. This PCR-based method of parasite quantitation with organotypic brain tissue samples can be regarded as a novel ex vivo approach for exploring different aspects of cerebral N. caninum infection.
Resumo:
Intermolecular electron-transfer reactions have a crucial role in biology, solution chemistry and electrochemistry. The first step of such reactions is the expulsion of the electron to the solvent, whose mechanism is determined by the structure and dynamical response of the latter. Here we visualize the electron transfer to water using ultrafast fluorescence spectroscopy with polychromatic detection from the ultraviolet to the visible region, upon photo-excitation of the so-called charge transfer to solvent states of aqueous iodide. The initial emission is short lived (~60 fs) and it relaxes to a broad distribution of lower-energy charge transfer to solvent states upon rearrangement of the solvent cage. This distribution reflects the inhomogeneous character of the solvent cage around iodide. Electron ejection occurs from the relaxed charge transfer to solvent states with lifetimes of 100–400 fs that increase with decreasing emission energy.