997 resultados para Wave packet


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Starting from the growth of high-quality 1.3 mu m GaInNAs/GaAs quantum well (QW), the QW emission wavelength has been extended up to 1.55 mu m by a combination of lowering growth rate, using GaNAs barriers and incorporating some amount of Sb. The photoluminescence properties of 1.5 mu m range GaInNAsSb/GaNAs QWs are quite comparable to the 1.3 mu m QWs, revealing positive effect of Sb on improving the optical quality of the QWs. A 1.59 mu m lasing of a GaInNAsSb/GaNAs single-QW laser diode is obtained under continuous current injection at room temperature. The threshold current density is 2.6 kA/cm(2) with as-cleaved facet mirrors. (c) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Passive mode locking of a solid-state Nd:GdVO4 laser is demonstrated. The laser is mode locked by use of a semiconductor absorber mirror (SAM). A low Nd3+ doped Nd:GdVO4 crystal is used to mitigate the thermal lens effect of the laser crystal at a high pump power. The maximum average output power is up to 6.5 W, and the pulse duration is as short as 6.2 ps. The optic-to-optic conversion efficiency is 32.5% and the repetition rate is about 110 MHz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Equilateral-triangle-resonator (ETR) microlasers with an output waveguide connected to one of the vertices of the ETR are suitable to be a light source for photonic integrated circuits. InP-GaInAsP ETR lasers with side length from 10 to 30 pm and the output-waveguide width of 1 or 2 pm are fabricated using standard photolithography and inductively coupled-plasma etching techniques. Continuous-wave electrically injected 1520-nm ETR laser with 20-mu m sides is realized with the maximum output power 0.17 and 0.067 mW and the threshold current 34 and 43 mA at 290 K and 295 K, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the first-principles band-structure method and the special quasirandom structures approach, the authors have investigated the band structure of random AlxInyGa1-x-yN quaternary alloys. They show that the wave functions of the band edge states are more localized on the InN sites. Consequently, the photoluminescence transition intensity in the alloy is higher than that in GaN. The valence band maximum state of the quaternary alloy is also higher than GaN with the same band gap, indicating that the alloy can be doped more easily as p-type. (c) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high-power continuous wave (cw) mode-locked Nd:YVO4 solid-state laser was demonstrated by use of a semiconductor absorber mirror (SAM). The maximum average output power was 8.1 W and the optic-to-optic conversion efficiency was about 41 %. At the maximum incident pump power, the pulse width was about 8.6 ps and the repetition rate was 130 MHz. Experimental results indicated that this absorber was suitable for high power mode-locked solid-state lasers. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors present an analysis of a plasmonic surface-wave splitter, simulated using a two-dimensional finite-difference time-domain technique. A single subwavelength slit is employed as a high-intensity nanoscale excitation source for plasmonic surface waves, resulting in a miniaturized light-surface plasmon coupler. With different surface structures located on the two sides of the slit, the device is able to confine and guide light waves of different wavelengths in opposite directions. Within the 15 mu m simulation region, it is found that the intensity of the guided light at the interface is roughly two to eight times the peak intensity of the incident light, and the propagation length can reach approximately 42 and 16 mu m and at the wavelengths of 0.63 and 1.33 mu m, respectively. (c) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An add-drop filter based on a perfect square resonator can realize a maximum of only 25% power dropping because the confined modes are standing-wave modes. By means of mode coupling between two modes with inverse symmetry properties, a traveling-wave-like filtering response is obtained in a two-dimensional single square cavity filter with cut or circular corners by finite-difference time-domain simulation. The optimized deformation parameters for an add-drop filter can be accurately predicted as the overlapping point of the two coupling modes in an isolated deformed square cavity. More than 80% power dropping can be obtained in a deformed square cavity filter with a side length of 3.01 mu m. The free spectral region is decided by the mode spacing between modes, with the sum of the mode indices differing by 1. (c) 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The time evolution of the ground state wave function of an exciton in an ideal bilayer system is investigated within the framework of the effective-mass approximation. All of the moduli squared of the ground state wave functions evolve with time as cosine functions after an in-plane electric field is applied to the bilayer system. The variation amplitude and period of the modulus squared of the ground state wave function increase with the in-plane electric field F-r for a fixed in-plane relative coordinate r and fixed separation d between the electron and hole layers. Moreover, the variation amplitude and period of the modulus squared of the ground state wave function increase with the separation d for a fixed r and fixed in-plane electric field. Additionally, the modulus squared of the ground state wave function decreases as r increases at a given time t for fixed values of d and F-r. (c) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinear optical properties of silicon nanocrystals (nc-Si) embedded in SiO2 films are investigated using time-resolved four-wave mixing technique with a femtosecond laser. the off-resonant third-order nonlinear susceptibility chi((3)) is observed to be 1.3 x 10(-10) esu at 800 nm. The relaxation time of the film is fast as short as 50 fs. The off-resonant nonlinearity is predominantly electronic in origin and enhanced due to quantum confinement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A self-assembled quantum-wire laser structure was grown by solid-source molecular beam epitaxy in an InAlGaAs-InAlAs matrix oil InP(001) substrate. Ridge-waveguide lasers were fabricated and demonstrated to operate at a heatsink temperature tip to 330 K in continuous-wave (CW) mode. The emission wavelength of the lasers with 5 mm-long cavity was 1.713 mu m at room temperature in CW mode. The temperature stability of the devices was analysed and the characteristic temperature was found to be 47 K in the mnge of 220-320 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic states of nano-structures are studied in the framework of effective-mass envelope-function theory using the plane wave basis. The barrier width and the number of plane waves are proposed to be 2.5 times the effective Bohr radius and 15(n), respectively, for n-dimensional nano-structures (n = 1,2,3). Our proposals can be widely applied in the design of various nano-structure devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple cw mode-locked solid-state laser, which is end-pumped by a low-power laser diode, was demonstrated by optimizing the laser-mode size inside the gain medium. The optimum ratio between mode and pump spot sizes inside the laser crystal was estimated for a cw mode-locked laser, taking into account the input pump power. Calculation and experiment have shown that the optimum ratio was about 3 when the pump power is 2 W, which is different from the value regularly used in passively mode-locked solid-state lasers. This conclusion is also helpful in increasing the efficiency of high-power ultrashort lasers. (C) 2006 Society of Photo-Optical Instrumentation Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-quality and high-resistivity GaN films were grown on (0001) sapphire face by metal-organic vapour phase epitaxy. To measure the surface acoustic wave properties accurately, we deposited metallized interdigital transducers on the GaN surface. The acoustic surface wave velocity and electromechanical coupling coefficient were measured, respectively, to be 5667 m/s and 1.9% by the pulse method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantization of RLC circuit is given and described by a double-wave function. A comparison between classical limit result and those of classical theory is made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the one-dimensional tight-binding model;rnd chi-3 approximation, we have calculated four-wave-mixing (FWM) signals for a semiconductor superlattice in the presence of both static and high-frequency electric fields. When the exciton effect is negligible, the time-periodic field dynamically delocalizes the otherwise localized Wannier-Stark states, and accordingly quasienergy band structures are formed, and manifest in the FWM spectra as a series of equally separated continua. The width of each continuum is proportional to the joint width of the valence and conduction minibands and is independent of the Wannier-Stark index. The realistic homogeneous broadening blurs the continua into broad peaks, whose line shapes, far from the Lorentzian, vary with the delay time in the FWM spectra. The swinging range of the peaks is just the quasienergy bandwidth. The dynamical delocalization (DDL) also induces significant FWM signals well beyond the excitation energy window. When the Coulomb interaction is taken into account, the unequal spacing between the excitonic Wannier-Stark levels weakens the DDL effect, and the FWM spectrum is transformed into groups of discrete lines. Strikingly, the groups are evenly spaced by the ac field frequency, reflecting the characteristic of the quasienergy states. The homogeneous broadening again smears out the line structures, leading to the excitonic FWM spectra quite similar to those without the exciton effect. However, all these features predicted by the dynamical theory do not appear in a recent experiment [Phys. Rev. Lett. 79, 301 (1997)], in which, by using the static approximation the observed Wannier-Stark ladder with delay-time-dependent spacing in the FWM spectra is attributed to a temporally periodic dipole field, produced by the Bloch oscillation of electrons in real space. The contradiction between the dynamical theory and the experiments is discussed. In addition, our calculation indicates that the dynamical localization coherently enhances the time-integrated FWM signals. The feasibility of using such a technique to study the dynamical localization phenomena is shown. [S0163-1829(99)10607-6].