884 resultados para Solution of mathematical problems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Markov chain Monte Carlo (MCMC) estimation provides a solution to the complex integration problems that are faced in the Bayesian analysis of statistical problems. The implementation of MCMC algorithms is, however, code intensive and time consuming. We have developed a Python package, which is called PyMCMC, that aids in the construction of MCMC samplers and helps to substantially reduce the likelihood of coding error, as well as aid in the minimisation of repetitive code. PyMCMC contains classes for Gibbs, Metropolis Hastings, independent Metropolis Hastings, random walk Metropolis Hastings, orientational bias Monte Carlo and slice samplers as well as specific modules for common models such as a module for Bayesian regression analysis. PyMCMC is straightforward to optimise, taking advantage of the Python libraries Numpy and Scipy, as well as being readily extensible with C or Fortran.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A model for drug diffusion from a spherical polymeric drug delivery device is considered. The model contains two key features. The first is that solvent diffuses into the polymer, which then transitions from a glassy to a rubbery state. The interface between the two states of polymer is modelled as a moving boundary, whose speed is governed by a kinetic law; the same moving boundary problem arises in the one-phase limit of a Stefan problem with kinetic undercooling. The second feature is that drug diffuses only through the rubbery region, with a nonlinear diffusion coefficient that depends on the concentration of solvent. We analyse the model using both formal asymptotics and numerical computation, the latter by applying a front-fixing scheme with a finite volume method. Previous results are extended and comparisons are made with linear models that work well under certain parameter regimes. Finally, a model for a multi-layered drug delivery device is suggested, which allows for more flexible control of drug release.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, an analysis of the response curve of the vascular endothelial growth factor (VEGF) receptor and its application to cancer therapy was described in [T. Alarcón, and K. Page, J. R. Soc. Lond. Interface 4, 283–304 (2007)]. The analysis is significantly extended here by demonstrating that an alternative computational strategy, namely the Krylov FSP algorithm for the direct solution of the chemical master equation, is feasible for the study of the receptor model. The new method allows us to further investigate the hypothesis of symmetry in the stochastic fluctuations of the response. Also, by augmenting the original model with a single reversible reaction we formulate a plausible mechanism capable of realizing a bimodal response, which is reported experimentally but which is not exhibited by the original model. The significance of these findings for mechanisms of tumour resistance to antiangiogenic therapy is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In practice, parallel-machine job-shop scheduling (PMJSS) is very useful in the development of standard modelling approaches and generic solution techniques for many real-world scheduling problems. In this paper, based on the analysis of structural properties in an extended disjunctive graph model, a hybrid shifting bottleneck procedure (HSBP) algorithm combined with Tabu Search metaheuristic algorithm is developed to deal with the PMJSS problem. The original-version SBP algorithm for the job-shop scheduling (JSS) has been significantly improved to solve the PMJSS problem with four novelties: i) a topological-sequence algorithm is proposed to decompose the PMJSS problem into a set of single-machine scheduling (SMS) and/or parallel-machine scheduling (PMS) subproblems; ii) a modified Carlier algorithm based on the proposed lemmas and the proofs is developed to solve the SMS subproblem; iii) the Jackson rule is extended to solve the PMS subproblem; iv) a Tabu Search metaheuristic algorithm is embedded under the framework of SBP to optimise the JSS and PMJSS cases. The computational experiments show that the proposed HSBP is very efficient in solving the JSS and PMJSS problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research deals with an innovative methodology for optimising the coal train scheduling problem. Based on our previously published work, generic solution techniques are developed by utilising a “toolbox” of standard well-solved standard scheduling problems. According to our analysis, the coal train scheduling problem can be basically modelled a Blocking Parallel-Machine Job-Shop Scheduling (BPMJSS) problem with some minor constraints. To construct the feasible train schedules, an innovative constructive algorithm called the SLEK algorithm is proposed. To optimise the train schedule, a three-stage hybrid algorithm called the SLEK-BIH-TS algorithm is developed based on the definition of a sophisticated neighbourhood structure under the mechanism of the Best-Insertion-Heuristic (BIH) algorithm and Tabu Search (TS) metaheuristic algorithm. A case study is performed for optimising a complex real-world coal rail system in Australia. A method to calculate the lower bound of the makespan is proposed to evaluate results. The results indicate that the proposed methodology is promising to find the optimal or near-optimal feasible train timetables of a coal rail system under network and terminal capacity constraints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the shop scheduling problems such as flow-shop, job-shop, open-shop, mixed-shop, and group-shop, most research focuses on optimizing the makespan under static conditions and does not take into consideration dynamic disturbances such as machine breakdown and new job arrivals. We regard the shop scheduling problem under static conditions as the static shop scheduling problem, while the shop scheduling problem with dynamic disturbances as the dynamic shop scheduling problem. In this paper, we analyze the characteristics of the dynamic shop scheduling problem when machine breakdown and new job arrivals occur, and present a framework to model the dynamic shop scheduling problem as a static group-shop-type scheduling problem. Using the proposed framework, we apply a metaheuristic proposed for solving the static shop scheduling problem to a number of dynamic shop scheduling benchmark problems. The results show that the metaheuristic methodology which has been successfully applied to the static shop scheduling problems can also be applied to solve the dynamic shop scheduling problem efficiently.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose three meta-heuristic algorithms for the permutation flowshop (PFS) and the general flowshop (GFS) problems. Two different neighborhood structures are used for these two types of flowshop problem. For the PFS problem, an insertion neighborhood structure is used, while for the GFS problem, a critical-path neighborhood structure is adopted. To evaluate the performance of the proposed algorithms, two sets of problem instances are tested against the algorithms for both types of flowshop problems. The computational results show that the proposed meta-heuristic algorithms with insertion neighborhood for the PFS problem perform slightly better than the corresponding algorithms with critical-path neighborhood for the GFS problem. But in terms of computation time, the GFS algorithms are faster than the corresponding PFS algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth of solid tumours beyond a critical size is dependent upon angiogenesis, the formation of new blood vessels from an existing vasculature. Tumours may remain dormant at microscopic sizes for some years before switching to a mode in which growth of a supportive vasculature is initiated. The new blood vessels supply nutrients, oxygen, and access to routes by which tumour cells may travel to other sites within the host (metastasize). In recent decades an abundance of biological research has focused on tumour-induced angiogenesis in the hope that treatments targeted at the vasculature may result in a stabilisation or regression of the disease: a tantalizing prospect. The complex and fascinating process of angiogenesis has also attracted the interest of researchers in the field of mathematical biology, a discipline that is, for mathematics, relatively new. The challenge in mathematical biology is to produce a model that captures the essential elements and critical dependencies of a biological system. Such a model may ultimately be used as a predictive tool. In this thesis we examine a number of aspects of tumour-induced angiogenesis, focusing on growth of the neovasculature external to the tumour. Firstly we present a one-dimensional continuum model of tumour-induced angiogenesis in which elements of the immune system or other tumour-cytotoxins are delivered via the newly formed vessels. This model, based on observations from experiments by Judah Folkman et al., is able to show regression of the tumour for some parameter regimes. The modelling highlights a number of interesting aspects of the process that may be characterised further in the laboratory. The next model we present examines the initiation positions of blood vessel sprouts on an existing vessel, in a two-dimensional domain. This model hypothesises that a simple feedback inhibition mechanism may be used to describe the spacing of these sprouts with the inhibitor being produced by breakdown of the existing vessel's basement membrane. Finally, we have developed a stochastic model of blood vessel growth and anastomosis in three dimensions. The model has been implemented in C++, includes an openGL interface, and uses a novel algorithm for calculating proximity of the line segments representing a growing vessel. This choice of programming language and graphics interface allows for near-simultaneous calculation and visualisation of blood vessel networks using a contemporary personal computer. In addition the visualised results may be transformed interactively, and drop-down menus facilitate changes in the parameter values. Visualisation of results is of vital importance in the communication of mathematical information to a wide audience, and we aim to incorporate this philosophy in the thesis. As biological research further uncovers the intriguing processes involved in tumourinduced angiogenesis, we conclude with a comment from mathematical biologist Jim Murray, Mathematical biology is : : : the most exciting modern application of mathematics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cognitive obstacles that arise in the teaching and learning of scalar line integrals, derived from cognitive aids provided to students when first learning about integration of single variable functions are described. A discussion of how and why the obstacles cause students problems is presented and possible strategies to overcome the obstacles are outlined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A standard method for the numerical solution of partial differential equations (PDEs) is the method of lines. In this approach the PDE is discretised in space using �finite di�fferences or similar techniques, and the resulting semidiscrete problem in time is integrated using an initial value problem solver. A significant challenge when applying the method of lines to fractional PDEs is that the non-local nature of the fractional derivatives results in a discretised system where each equation involves contributions from many (possibly every) spatial node(s). This has important consequences for the effi�ciency of the numerical solver. First, since the cost of evaluating the discrete equations is high, it is essential to minimise the number of evaluations required to advance the solution in time. Second, since the Jacobian matrix of the system is dense (partially or fully), methods that avoid the need to form and factorise this matrix are preferred. In this paper, we consider a nonlinear two-sided space-fractional di�ffusion equation in one spatial dimension. A key contribution of this paper is to demonstrate how an eff�ective preconditioner is crucial for improving the effi�ciency of the method of lines for solving this equation. In particular, we show how to construct suitable banded approximations to the system Jacobian for preconditioning purposes that permit high orders and large stepsizes to be used in the temporal integration, without requiring dense matrices to be formed. The results of numerical experiments are presented that demonstrate the effectiveness of this approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The scheduling of locomotive movements on cane railways has proven to be a very complex task. Various optimisation methods have been used over the years to try and produce an optimised schedule that eliminates or minimises bin supply delays to harvesters and the factory, while minimising the number of locomotives, locomotive shifts and cane bins, and also the cane age. This paper reports on a new attempt to develop an automatic scheduler using a mathematical model solved using mixed integer programming and constraint programming approaches and blocking parallel job shop scheduling fundamentals. The model solution has been explored using conventional constraint programming search techniques and found to produce a reasonable schedule for small-scale problems with up to nine harvesters. While more effort is required to complete the development of the full model with metaheuristic search techniques, the work completed to date gives confidence that the metaheuristic techniques will provide near optimal solutions in reasonable time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we extend the ideas of Brugnano, Iavernaro and Trigiante in their development of HBVM($s,r$) methods to construct symplectic Runge-Kutta methods for all values of $s$ and $r$ with $s\geq r$. However, these methods do not see the dramatic performance improvement that HBVMs can attain. Nevertheless, in the case of additive stochastic Hamiltonian problems an extension of these ideas, which requires the simulation of an independent Wiener process at each stage of a Runge-Kutta method, leads to methods that have very favourable properties. These ideas are illustrated by some simple numerical tests for the modified midpoint rule.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, some authors have considered a new diffusion model–space and time fractional Bloch-Torrey equation (ST-FBTE). Magin et al. (2008) have derived analytical solutions with fractional order dynamics in space (i.e., _ = 1, β an arbitrary real number, 1 < β ≤ 2) and time (i.e., 0 < α < 1, and β = 2), respectively. Yu et al. (2011) have derived an analytical solution and an effective implicit numerical method for solving ST-FBTEs, and also discussed the stability and convergence of the implicit numerical method. However, due to the computational overheads necessary to perform the simulations for nuclear magnetic resonance (NMR) in three dimensions, they present a study based on a two-dimensional example to confirm their theoretical analysis. Alternating direction implicit (ADI) schemes have been proposed for the numerical simulations of classic differential equations. The ADI schemes will reduce a multidimensional problem to a series of independent one-dimensional problems and are thus computationally efficient. In this paper, we consider the numerical solution of a ST-FBTE on a finite domain. The time and space derivatives in the ST-FBTE are replaced by the Caputo and the sequential Riesz fractional derivatives, respectively. A fractional alternating direction implicit scheme (FADIS) for the ST-FBTE in 3-D is proposed. Stability and convergence properties of the FADIS are discussed. Finally, some numerical results for ST-FBTE are given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Percolation flow problems are discussed in many research fields, such as seepage hydraulics, groundwater hydraulics, groundwater dynamics and fluid dynamics in porous media. Many physical processes appear to exhibit fractional-order behavior that may vary with time, or space, or space and time. The theory of pseudodifferential operators and equations has been used to deal with this situation. In this paper we use a fractional Darcys law with variable order Riemann-Liouville fractional derivatives, this leads to a new variable-order fractional percolation equation. In this paper, a new two-dimensional variable-order fractional percolation equation is considered. A new implicit numerical method and an alternating direct method for the two-dimensional variable-order fractional model is proposed. Consistency, stability and convergence of the implicit finite difference method are established. Finally, some numerical examples are given. The numerical results demonstrate the effectiveness of the methods. This technique can be used to simulate a three-dimensional variable-order fractional percolation equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cable equation is one of the most fundamental equations for modeling neuronal dynamics. Cable equations with a fractional order temporal derivative have been introduced to model electrotonic properties of spiny neuronal dendrites. In this paper, the fractional cable equation involving two integro-differential operators is considered. The Galerkin finite element approximations of the fractional cable equation are proposed. The main contribution of this work is outlined as follow: • A semi-discrete finite difference approximation in time is proposed. We prove that the scheme is unconditionally stable, and the numerical solution converges to the exact solution with order O(Δt). • A semi-discrete difference scheme for improving the order of convergence for solving the fractional cable equation is proposed, and the numerical solution converges to the exact solution with order O((Δt)2). • Based on the above semi-discrete difference approximations, Galerkin finite element approximations in space for a full discretization are also investigated. • Finally, some numerical results are given to demonstrate the theoretical analysis.