974 resultados para Robin Hood
Resumo:
The first graduate, John Auld, receives his convocation hood from (?) during the first ever Convocation held at Brock in 1967. Chancellor R. L. Hearn stands in front of John Auld.
Resumo:
seventy-eight diploma nursing students participated (from a class of 112 students) in completing the Coopersmith Self-Esteem Inventory administered by mailed questionnaire before and at the end of the preceptorship. Also a rating form was completed by 70 preceptors to determine how the observed level of self-confidence compared to self-reported self-esteem at the end of the preceptorship program. As well, four preceptors and five preceptees completed weekly diaries and six preceptors and six preceptees participated in weekly phone interviews with the investigator. Overall, self-esteem went up after the preceptorship. A comparison was made between the pretest and posttest using the t-test (dependent paired samples). Significant difference (p=.05) was demonstrated. Self-confidence ratings by preceptors were inaccurate as they had no relation to the self-reported self-esteem level of students. The diaries and interviews of preceptors and preceptees were a rich source of data as well.
Resumo:
Hg(18-Crown-6)C12 and Cd(18-Crown-6)C12 are isostructura1, space group Cl~ Z = 2. For the mercury compound, a = 10.444(2) A° , b = 11. 468(1) A° , c = 7.754(1) A° , a = 90.06(1)°, B = 82.20(1)°, Y = 90.07(1)°, Dobs = 1.87, Dca1c = 1.93, V = 920.05 13, R = 4.66%. For the cadmium compound, 000 a = 10.374(1) A, b = 11.419(2) A, c = 7.729(1) A, a = 89.95(1)°, B = 81.86(2)°, Y = 89.99(1)°, Dobs = 1.61, Dcalc = 1.64, V = 906.4613, R = 3.95%. The mercury and cadmium ions exhibit hexagonal bipyramidal coordination, with the metal ion located on a centre of symmetry in the plane of the oxygen atoms. The main differences between the two structures are an increase in the metal-oxygen distance and a reduction in the metalchloride distance when the central ion changes from Cd2+ to Hg2+. These differences may be explained in terms of the differences in hardness or softness of the metal ions and the donor atoms.
Resumo:
Don Chapman was a Silver Badger, a unique distinction given to the first class of Brock University students upon their graduation in 1967 and 1968. Mr. Chapman was an active participant in the student life during his years at Brock University. After graduation he continued to take an active role as a member of the alumni of Brock University. Mr. Chapman was a teacher at St. John’s-Kilmarnock School, Waterloo, Ont., until his death in 2005.
Resumo:
This study examined the process of integrating children with Emotional Behavioural Disorders (EBDs) with their peers into recreation programs. The purpose was to develop a set of recommendations for the development of a handbook to help workers in recreation with the integration process. To this end, a needs assessment was conducted with experienced recreation workers in the form of semistructured interviews. Participants were recruited from two community centers in a large southern Ontario city. Themes were drawn from the analysis of the interview transcripts and combined with findings from the research literature. The results were a set of recommendations on the content and format of a handbook for integrating children with EBDs into recreation programs.
Resumo:
A letter from Earl Grey (Sir Albert Henry George Grey) the Governor General of Canada to Wetherald discusses her 1907 publication The Last Robin: Lyrics and Sonnets. The Governor General describes his fondness for Wetherald's sonnets and the "shakespearian" quality.
Resumo:
The purpose of this project is to provide social service practitioners with tools and perspectives to engage young people in a process of developing and connecting with their own personal narratives, and storytelling with others. This project extensively reviews the literature to explore Why Story, What Is Story, Future Directions of Story, and Challenges of Story. Anchoring this exploration is Freire’s (1970/2000) intentional uncovering and decoding. Taking a phenomenological approach, I draw additionally on Brookfield’s (1995) critical reflection; Delgado (1989) and McLaren (1998) for subversive narrative; and Robin (2008) and Sadik (2008) for digital storytelling. The recommendations provided within this project include a practical model built upon Baxter Magolda and King’s (2004) process towards self-authorship for engaging an exercise of storytelling that is accessible to practitioners and young people alike. A personal narrative that aims to help connect lived experience with the theoretical content underscores this project. I call for social service practitioners to engage their own personal narratives in an inclusive and purposeful storytelling method that enhances their ability to help the young people they serve develop and share their stories.
Resumo:
A portfolio was developed to encourage teachers of Aboriginal children to include First Nations mentor texts into their daily teaching practices. The artifacts within the portfolio have been produced in accordance with guiding beliefs about how students, specifically First Nations students, learn. The portfolio supports the notion that Aboriginal children need to encounter representations of their own culture, histories and beliefs within the literature in order to be successful in school. The use of First Nations children’s literature in the classroom was explored with an emphasis on how using this literature will assist in improving literacy levels and the self-esteem of First Nations students.
Resumo:
The letter mentions that Arthur was supposed to arrive, but did not. The letter mentions evangelist Billy Sunday. She also mentions the authors she has been reading: Hood, Emerson, Wordsworth and Byron. Eleanore Celeste plans to begin reading "Parsifal of Wagner". This letter is undated.
Resumo:
UANL
Flippable Pairs and Subset Comparisons in Comparative Probability Orderings and Related Simple Games
Resumo:
We show that every additively representable comparative probability order on n atoms is determined by at least n - 1 binary subset comparisons. We show that there are many orders of this kind, not just the lexicographic order. These results provide answers to two questions of Fishburn et al (2002). We also study the flip relation on the class of all comparative probability orders introduced by Maclagan. We generalise an important theorem of Fishburn, Peke?c and Reeds, by showing that in any minimal set of comparisons that determine a comparative probability order, all comparisons are flippable. By calculating the characteristics of the flip relation for n = 6 we discover that the regions in the corresponding hyperplane arrangement can have no more than 13 faces and that there are 20 regions with 13 faces. All the neighbours of the 20 comparative probability orders which correspond to those regions are representable. Finally we define a class of simple games with complete desirability relation for which its strong desirability relation is acyclic, and show that the flip relation carries all the information about these games. We show that for n = 6 these games are weighted majority games.
Resumo:
In this paper we show that lobbying in conditions of “direct democracy” is virtually impossible, even in conditions of complete information about voters preferences, since it would require solving a very computationally hard problem. We use the apparatus of parametrized complexity for this purpose.
Resumo:
La construction d'un quotient, en topologie, est relativement simple; si $G$ est un groupe topologique agissant sur un espace topologique $X$, on peut considérer l'application naturelle de $X$ dans $X/G$, l'espace d'orbites muni de la topologie quotient. En géométrie algébrique, malheureusement, il n'est généralement pas possible de munir l'espace d'orbites d'une structure de variété. Dans le cas de l'action d'un groupe linéairement réductif $G$ sur une variété projective $X$, la théorie géométrique des invariants nous permet toutefois de construire un morphisme de variété d'un ouvert $U$ de $X$ vers une variété projective $X//U$, se rapprochant autant que possible d'une application quotient, au sens topologique du terme. Considérons par exemple $X\subseteq P^{n}$, une $k$-variété projective sur laquelle agit un groupe linéairement réductif $G$ et supposons que cette action soit induite par une action linéaire de $G$ sur $A^{n+1}$. Soit $\widehat{X}\subseteq A^{n+1}$, le cône affine au dessus de $\X$. Par un théorème de la théorie classique des invariants, il existe alors des invariants homogènes $f_{1},...,f_{r}\in C[\widehat{X}]^{G}$ tels que $$C[\widehat{X}]^{G}= C[f_{1},...,f_{r}].$$ On appellera le nilcone, que l'on notera $N$, la sous-variété de $\X$ définie par le locus des invariants $f_{1},...,f_{r}$. Soit $Proj(C[\widehat{X}]^{G})$, le spectre projectif de l'anneau des invariants. L'application rationnelle $$\pi:X\dashrightarrow Proj(C[f_{1},...,f_{r}])$$ induite par l'inclusion de $C[\widehat{X}]^{G}$ dans $C[\widehat{X}]$ est alors surjective, constante sur les orbites et sépare les orbites autant qu'il est possible de le faire; plus précisément, chaque fibre contient exactement une orbite fermée. Pour obtenir une application régulière satisfaisant les mêmes propriétés, il est nécessaire de jeter les points du nilcone. On obtient alors l'application quotient $$\pi:X\backslash N\rightarrow Proj(C[f_{1},...,f_{r}]).$$ Le critère de Hilbert-Mumford, dû à Hilbert et repris par Mumford près d'un demi-siècle plus tard, permet de décrire $N$ sans connaître les $f_{1},...,f_{r}$. Ce critère est d'autant plus utile que les générateurs de l'anneau des invariants ne sont connus que dans certains cas particuliers. Malgré les applications concrètes de ce théorème en géométrie algébrique classique, les démonstrations que l'on en trouve dans la littérature sont généralement données dans le cadre peu accessible des schémas. L'objectif de ce mémoire sera, entre autres, de donner une démonstration de ce critère en utilisant autant que possible les outils de la géométrie algébrique classique et de l'algèbre commutative. La version que nous démontrerons est un peu plus générale que la version originale de Hilbert \cite{hilbert} et se retrouve, par exemple, dans \cite{kempf}. Notre preuve est valide sur $C$ mais pourrait être généralisée à un corps $k$ de caractéristique nulle, pas nécessairement algébriquement clos. Dans la seconde partie de ce mémoire, nous étudierons la relation entre la construction précédente et celle obtenue en incluant les covariants en plus des invariants. Nous démontrerons dans ce cas un critère analogue au critère de Hilbert-Mumford (Théorème 6.3.2). C'est un théorème de Brion pour lequel nous donnerons une version un peu plus générale. Cette version, de même qu'une preuve simplifiée d'un théorème de Grosshans (Théorème 6.1.7), sont les éléments de ce mémoire que l'on ne retrouve pas dans la littérature.