999 resultados para thin films optics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel route involving atmospheric pressure chemical vapour deposition (APCVD) is reported for coating Nb2O5 onto glass substrates via the reaction of NbCl5 and ethyl acetate at 400-660degreesC. Raman spectroscopy is shown to be a simple diagnostic tool for the analysis of these thin films. The contact angle of water on Nb2O5-coated glass drops on UV irradiation from 60degrees to 5-20degrees. XPS Analysis showed that the Nb:O ratio of the film was 1:2.5. Glancing angle X-ray diffraction showed that all films were crystalline, with only a single phase being observed; this has some preferred orientation in the (201) plane of Nb2O5. The niobium(V) oxide materials show minimal photocatalytic ability to degrade organic material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acidification of an isopropanol solution containing mixtures of [Ti(OPri)(4)] and [W(OEt)(5)] produced solutions from which various TiO2, WO3 and TiO2/WO3 thin films could be obtained by dip coating and annealing. The films were analysed by X-ray diffraction, SEM/EDAX, Raman, electronic spectra, contact angle and photoactivity with respect to destruction of an over layer of stearic acid. The TiO2/WO3 films were shown to be mixtures of two phases TiO2 and WO3 rather than a solid solution TixWyO2. The 2% tungsten oxide doped titania films were shown to be the most effective photocatalysts. All of the TiO2 and TiO2/WO3 films showed light induced superhydrophillicity. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin (50-500 nm) films of TiO2 may be deposited on glass substrates by the atmospheric pressure chemical vapor deposition (APCVD) reaction of TiCl4 with ethyl acetate at 400600 C. The TiO2 films are exclusively in the form of anatase, as established by Raman microscopy and glancing angle X-ray diffraction. X-ray photoelectron spectroscopy gave a 1:2 Ti:O ratio with Ti 2P(3/2) at 458.6 eV and O 1s is at 530.6 eV. The water droplet contact angle drops from 60degrees to

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results of a study of the oxidative mineralisation of 4-CP by oxygen, sensitised by thin films of Degussa P25 TiO2, are reported. The films are used under conditions in which the kinetics of photomineralisation are independent of mass transfer effects and stable towards repeated irradiation. Using a TiO2 film, the process goes through the same mechanism as a TiO2 dispersion, generating the same intermediates, namely: 4-chlorocatechol and hydroquinone. The kinetics of photomineralisation show clear differences between a TiO2 film and a dispersion. With TiO2 films the initial rate of photomineralisation is strongly dependent upon photocatalyst loading, (units; g dm(-3)) reaching a distinct maximum, which appears to be associated with the formation of a monolayer of aggregated particles - the diameter of the aggregated particles is estimated as 0.44 mu m. A simple 2D model is presented to help illustrate the features of such a system. With TiO2 dispersions the rate usually reaches a plateau at ca. 0.5 g dm(-3) of TiO2. For TiO2 films the initial rate depends directly upon the incident light intensity, implying that the photocatalytically active particles are under low illumination conditions, partially shielded by the other particles making up each aggregated particle. In contrast, with TiO2 dispersions R-i depends upon I-0.64, implying that the different light intensities used spanned both the high (R(i)proportional to I-1/2) and low (R(i)proportional to I) intensity kinetic regions. The kinetics of photomineralisation of 4-CP, sensitised by TiO2 films obey the same Langmuir-Hinshelwood expressions as found in most semiconductor photocatalyst work conducted with TiO2 dispersions. However, in a study of the variation R-i as a function of [4-CP] and [O-2] the values for the maximum rates were larger, and those for the apparent Langmuir adsorption coefficients were smaller, than those found for TiO2 dispersions. (C) 1998 Elsevier Science S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-quality luminescent thin films of strontium sulphide (SrS) with excellent stoichiometry have been grown by pulsed-laser deposition. The crystallinity, stoichiometry and cathodoluminescence (CL) have been investigated for the films deposited onto two differently coated glass substrates. Furthermore the importance of post-deposition annealing has been studied. SrS thin films grown at 450 degrees C onto glass substrates coated with tin-doped indium oxide show good crystallinity, with a preferred orientation along the (200) axis. Cerium-doped SrS (SrS:Ce) gives a strong blue CL output at 400 nm. Energy-dispersive X-ray spectroscopy shows that the films are stoichiometric and that the stoichiometry is controllable by varying deposition parameters.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulsed laser deposition (PLD) from a hot pressed manganese doped ZnS target using a KrF laser, has produced a high rate deposition method for growing luminescent thin films. Good stoichiometric quality and typical luminescent crystal structures have been observed with a predominant hexagonal phase and little evidence of the cubic phase. The luminescent characteristics were determined by cathodoluminescence and photoluminescence excitation and stable electroluminescence was observed under pulsed dc conditions with a minimum brightness of 150 cd/m2. PLD film characteristics are compared with those observed in radio-frequency sputtered samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optimization of interrelated deposition parameters during deposition of in situ YBa2Cu3O7 thin films on MgO substrates by KrF laser ablation was systematically studied in a single experimental chamber. The optimum condition was found to be a substrate temperature of 720-degrees-C and a target-substrate distance of 5 cm in an oxygen partial pressure of 100 mTorr. These conditions produced films with T(c) = 87 K. The presence of YO in the plasma plume was found to be important in producing good quality films. The films were characterized by resistance-temperature measurements, energy dispersive x-ray analyses, scanning electron microscopy, and x-ray-diffraction measurements, and the physical reasons underlying film quality degradation at parameter values away from optimal are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PbZrO3/SrRuO3/SrTiO3 (100) epitaxial heterostructures with different thickness of the PbZrO3 (PZO) layer (d(PZO) similar to 5-160 nm) were fabricated by pulsed laser deposition. The ultrathin PZO films (d(PZO) <= 10 nm) were found to possess a rhombohedral structure. On increasing the PZO film thickness, a bulk like orthorhombic phase started forming in the film with d(PZO) similar to 22 nm and became abundant in the thicker films. Nanobeam electron diffraction and room-temperature micro-Raman measurements revealed that the stabilization of the rhombohedral phase of PZO could be attributed to the epitaxial strain accommodated by the heterostructures. Room-temperature polarization vs electric field measurements performed on different samples showed characteristic double hysteresis loops of antiferroelectric materials accompanied by a small remnant polarization for the thick PZO films (dPZO >= 50 nm). The remnant polarization increased by reducing the PZO layer thickness, and a ferroelectric like hysteresis loop was observed for the sample with d(PZO) similar to 22 nm. Local ferroelectric properties measured by piezoresponse force microscopy also exhibited a similar thickness-dependent antiferroelectric-ferroelectric transition. Room-temperature electrical properties observed in the PZO thin films in correlation to their structural characteristics suggested that a ferroelectric rhombohedral phase could be stabilized in thin epitaxial PZO films experiencing large interfacial compressive stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bilayered Pb(Zr((1-x)),Ti(x))O(3) ferroelectric thin film heterostructures show complex ferroelastic nanodomain patterns. These ferroelastic nanodomains exist only in the upper layer, and hence are able to move under the application of an external electric field. Quantitative analysis reveals an enhanced piezoelectric coefficient of similar to 220 pm V(-1), rendering them attractive for a variety of electromechanical devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is renewed interest in rare-earth elements and gadolinium in particular for a range of studies in coupling physics and applications. However, it is still apparent that synthesis impacts understanding of the intrinsic magnetic properties of thin gadolinium films, particularly for thicknesses of topicality. We report studies on 50nm thick nanogranular polycrystalline gadolinium thin films on SiO2 wafers that demonstrate single-crystal like behavior. The maximum in-plane saturation magnetization at 4K was found to be 4pMS4K = (2.61±0.26)T with a coercivity of HC4K = (160±5)Oe. A maximum Curie point of TC = (293±2)K was measured via zero-field-cooled - field-cooled magnetization measurements in close agreement with values reported in bulk single crystals. Our measurements revealed magnetic transitions at T1 = (12±2)K (as deposited samples) and T2 = (22±2)K (depositions on heated substrates) possibly arising from the interaction of paramagnetic fcc grains with their ferromagnetic hcp counterparts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Undoped and cobalt-doped (1-4 wt.%) ZnO polycrystalline, thin films have been fabricated on quartz substrates using sequential spin-casting and annealing of simple salt solutions. X-ray diffraction (XRD) reveals a wurzite ZnO crystalline structure with high-resolution transmission electron microscopy showing lattice planes of separation 0.26 nm, characteristic of (002) planes. The Co appears to be tetrahedrally co-ordinated in the lattice on the Zn sites (XRD) and has a charge of + 2 in a high-spin electronic state (X-ray photoelectron spectroscopy). Co-doping does not alter the wurzite structure and there is no evidence of the precipitation of cobalt oxide phases within the limits of detection of Raman and XRD analysis. Lattice defects and chemisorbed oxygen are probed using photoluminescence and Raman spectroscopy - crucially, however, this transparent semiconductor material retains a bandgap in the ultraviolet (3.30-3.48 eV) and high transparency (throughout the visible spectral regime) across the doping range. © 2012 Elsevier B.V.