931 resultados para heat shock response
Resumo:
Background: The aim of this study is to characterize and evaluate the host response caused by three different models of experimental periodontitis in mice.Methods: C57BL/6 wild-type female mice were distributed into six experimental groups and sacrificed at 7, 15, and 30 days after the induction of periodontal disease: 1) group C: no treatment control group; 2) group L: periodontal disease induced by ligature; 3) group G-Pg: oral gavage with Porphyromonas gingivalis (Pg); 4) group G-PgFn: oral gavage with Fusobacterium nucleatum + Pg; 5) group I-Pg: heat-killed Pg injected into the palatal mucosa between the molars; and 6) group I-V: phosphatebuffered saline injected into the palatal mucosa. The samples were used to analyze the immune-inflammatory process in the gingival tissue via descriptive histologic and real-time polymerase chain reaction analyses. The alveolar bone loss was evaluated using microcomputed tomography. The data were analyzed using the Kruskal-Wallis test, followed by a post hoc Dunn test and analysis of variance, followed by a Tukey test using a 5% significance level.Results: Only the ligature model displayed significant alveolar bone loss in the initial period (7 days), which was maintained with time. The group injected with heat-killed Pg displayed significant alveolar bone loss starting from day 15, which continued to progress with time (P < 0.05). A significant increase (P < 0.05) in the gene expression of proinflammatory cytokines (interleukin-6 and -1b) and proteins involved in osteoclastogenesis (receptor activator of nuclear factor-kB ligand and osteoprotegerin) was observed in the ligature group on day 7.Conclusion: The ligature and injection of heat-killed Pg models were the most representative of periodontal disease in humans, whereas the oral gavage models were not effective at inducing the disease under the experimental conditions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this work was to determine the adaptability of Saanen and A1/2Saanen x A1/2Anglo-Nubian (A1/2SA1/2AN) goats bred in tropical climates. The study included 30 goats, 15 Saanen and 15 A1/2SA1/2AN. The data was collected during the rainy and dry seasons. During the whole experimental period, the environment variables were recorded, as well as rectal temperature (RT), superficial temperature (ST), respiratory rate (RR) and heart rate (HR) and milk production (MP). The adaptability coefficient (AC) was calculated for both genotypes. The averages were evaluated by ANOVA at 5 % probability. There was a genotype and period of year effect, as well as the interaction genotype x period of year. Pearson's simple correlation analysis was then carried out between milk production and physiological and environment variables. There was a statistical difference (p < 0.05) between the seasons for RT, ST and RR. RT, RR and HR were lower for A1/2SA1/2AN than Saanen goats, regardless of the season. MP was greater in the dry season (p < 0.05) (2.52 A +/- 0.50 kg/day for A1/2SA1/2AN and 2.41 A +/- 0.38 kg/day for Saanen) than the rainy season (2.17 A +/- 0.27 kg/day for A1/2SA1/2AN and 2.28 A +/- 0.53 kg/day for Saanen). The MP correlations were very significant (p < 0.05), however low and negative, where it was higher when correlated with RR in Saanen goats. Under the conditions of the present study, it is concluded that the goats were influenced by climatic factors, where the rainy period was more likely to cause thermal stress in the animals.
Resumo:
The problem of shock generated vibration is very common in practice and difficult to isolate due to the high levels of excitation involved and its transient nature. If not properly isolated it could lead to large transmitted forces and displacements. Typically, classical shock isolation relies on the use of passive stiffness elements to absorb energy by deformation and some damping mechanism to dissipate residual vibration. The approach of using nonlinear stiffness elements is explored in this paper, focusing in providing an isolation system with low dynamic stiffness. The possibilities of using such a configuration for a shock mount are studied experimentally following previous theoretical models. The model studied considers electromagnets and permanent magnets in order to obtain nonlinear stiffness forces using different voltage configurations. It is found that the stiffness nonlinearities could be advantageous in improving shock isolation in terms of absolute displacement and acceleration response when compared with linear elastic elements. Copyright (C) 2015 Elsevier Ltd. All rights reserved
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Three experiments investigated learned helplessness in rats manipulating response topography within-subject and different intervals between treatment and tests among groups. In Experiment 1, rats previously exposed to inescapable shocks were tested under an escape contingency where either jumping or nose poking was required to terminate shocks: tests were run either 1, 14 or 28 days after treatment. Most rats failed to jump, as expected, but learned to nose poke, regardless of the interval between treatment and tests and order of testing. The same results were observed in male and female rats from a different laboratory (Experiment 2) and despite increased exposure to the escape contingencies using a within-subject design (Experiment 3). Furthermore, no evidence of helplessness reversal was observed, since animals failed to jump even after having learned to nose-poke in a previous test session. These results are not consistent with a learned helplessness hypothesis, which claims that shock (un)controllability is the key variable responsible for the effect. They are nonetheless consistent with the view that inescapable shocks enhance control by irrelevant features of the relationship between the environment and behavior. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The dengue virus non-structural 1 (NS1) protein contributes to evasion of host immune defenses and represents a target for immune responses. Evidences generated in experimental models, as well as the immune responses elicited by infected individuals, showed that induction of anti-NS1 immunity correlates with protective immunity but may also result in the generation of cross-reactive antibodies that recognize platelets and proteins involved in the coagulation cascade. In the present work, we evaluated the immune responses, protection to type 2 dengue virus (DENV2) challenges and safety parameters in BALB/c mice vaccinated with a recombinant NS1 protein in combination with three different adjuvants: aluminum hydroxide (alum), Freund's adjuvant (FA) or a genetically detoxified derivative of the heat-labile toxin (LTG33D), originally produced by some enterotoxigenic Escherichia coil (ETEC) strains. Mice were subcutaneously (s.c.) immunized with different vaccine formulations and the induced NS1-specific responses, including serum antibodies and T cell responses, were measured. Mice were also subjected to lethal challenges with the DENV2 NGC strain. The results showed that maximal protective immunity (50%) was achieved in mice vaccinated with NS1 in combination with LIG33D. Analyses of the NS1-specific immune responses showed that the anti-virus protection correlated mainly with the serum anti-NS1 antibody responses including higher avidity to the target antigen. Mice immunized with LTG33D elicited a prevailing IgG2a subclass response and generated antibodies with stronger affinity to the antigen than those generated in mice immunized with the other vaccine formulations. The vaccine formulations were also evaluated regarding induction of deleterious side effects and, in contrast to mice immunized with the FA-adjuvanted vaccine, no significant hepatic damage or enhanced C-reactive protein levels were detected in mice immunized with NS1 and LTG33D. Similarly, no detectable alterations in bleeding time and hematological parameters were detected in mice vaccinated with NS1 and LTG33D. Altogether, these results indicate that the combination of a purified recombinant NS1 and a nontoxic LT derivative is a promising alternative for the generation of safe and effective protein-based anti-dengue vaccine. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
OBJECTIVE: Volume replacement in septic patients improves hemodynamic stability. This effect can reduce the inflammatory response. The objective of this study was to evaluate the effect of 7.5% hypertonic saline solution versus 0.9% normal saline solution for volume replacement during an inflammatory response in endotoxemic rats. METHODS: We measured cytokines (serum and gut), nitrite, and lipid peroxidation (TBARS) as indicators of oxidative stress in the gut. Rats were divided into four groups: control group (C) that did not receive lipopolysaccharide; lipopolysaccharide injection without treatment (LPS); lipopolysaccharide injection with saline treatment (LPS + S); and lipopolysaccharide injection with hypertonic saline treatment (LPS + H). Serum and intestine were collected. Measurements were taken at 1.5, 8, and 24 h after lipopolysaccharide administration. RESULTS: Of the four groups, the LPS + H group had the highest survival rate. Hypertonic saline solution treatment led to lower levels of IL-6, IL-10, nitric oxide, and thiobarbituric acid reactive substances compared to 0.9% normal saline. In addition, hypertonic saline treatment resulted in a lower mortality compared to 0.9% normal saline treatment in endotoxemic rats. Volume replacement reduced levels of inflammatory mediators in the plasma and gut. CONCLUSION: Hypertonic saline treatment reduced mortality and lowered levels of inflammatory mediators in endotoxemic rats. Hypertonic saline also has the advantage of requiring less volume replacement.
Resumo:
Abstract Background Septic shock is the first cause of death in Intensive Care Units. Despite experimental data showing increased inflammatory response of aged animals following infection, the current accepted hypothesis claims that aged patients are immunocompromised, when compared to young individuals. Results Here, we describe a prospective cohort study designed to analyze the immune profile of this population. Conclusion Older people are as immunocompetent as the young individual, regarding the cytokines, chemokines and growth factors response to devastating infection.
Resumo:
Die oberflächennahe Geothermie leistet im Bereich der Nutzung regenerativer Wärme einen wichtigen Beitrag zum Klima- und Umweltschutz. Um die technische Nutzung oberflächennaher Geothermie zu optimieren, ist die Kenntnis der Beschaffenheit des geologischen Untergrundes ausschlaggebend. Die vorliegende Dissertation befasst sich mit der Bestimmung verschiedener Untergrundparameter an einem Erdwärmesondenfeld. Es wurden Untersuchungen zur Bestimmung der Wärmeleitfähigkeit wie der enhanced Thermal Response Test (eTRT), sowie eine Untergrund-Temperaturüberwachung im ersten Betriebsjahr durchgeführt. Die Überwachung zeigte keine gegenseitige Beeinflussung einzelner Sonden. Ein Vergleich zwischen dem geplanten und dem tatsächlichem Wärmebedarf des ersten Betriebsjahres ergab eine Abweichung von ca. 35%. Dies zeigt, dass die Nutzungsparameter der Anlage deren Effizienz maßgeblich beeinflussen können. Der am Beispielobjekt praktisch durchgeführte eTRT wurde mittels numerischer Modellierung auf seine Reproduzierbarkeit hin überprüft. Bei einem rein konduktiven Wärmetransport im Untergrund betrug die maximale Abweichung der Messung selbst unter ungünstigen Bedingungen lediglich ca. 6% vom zu erwartenden Wert. Die Detektion von grundwasserdurchflossenen Schichten ist in den Modellen ebenfalls gut abbildbar. Problematisch bleibt die hohe Abhängigkeit des Tests von einer konstanten Wärmezufuhr. Lediglich die Bestimmung der Wärmeleitfähigkeit über das Relaxationsverhalten des Untergrundes liefert bei Wärmeeintragsschwankungen hinreichend genaue Ergebnisse. Die mathematische Nachbearbeitung von fehlerhaften Temperaturkurven bietet einen Einstiegspunkt für weiterführende Forschung.
Resumo:
We hypothesized that fluid administration may increase regional splanchnic perfusion after abdominal surgery-even in the absence of a cardiac stroke volume (SV) increase and independent of accompanying endotoxemia. Sixteen anesthetized pigs underwent abdominal surgery with flow probe fitting around splanchnic vessels and carotid arteries. They were randomized to continuous placebo or endotoxin infusion, and when clinical signs of hypovolemia (mean arterial pressure, <60 mmHg; heart rate, >100 beats · min(-1); urine production, <0.5 mL · kg(-1) · h(-1); arterial lactate concentration, >2 mmol · L(-1)) and/or low pulmonary artery occlusion pressure (target 5-8 mmHg) were present, they received repeated boli of colloids (50 mL) as long as SV increased 10% or greater. Stroke volume and regional blood flows were monitored 2 min before and 30 min after fluid challenges. Of 132 fluid challenges, 45 (34%) resulted in an SV increase of 10% or greater, whereas 82 (62%) resulted in an increase of 10% or greater in one or more of the abdominal flows (P < 0.001). During blood flow redistribution, celiac trunk (19% of all measurements) and hepatic artery flow (15%) most often decreased, whereas portal vein (10%) and carotid artery (7%) flow decreased less frequently (P = 0.015, between regions). In control animals, celiac trunk (30% vs. 9%, P = 0.004) and hepatic artery (25% vs. 11%, P = 0.040) flow decreased more often than in endotoxin-infused pigs. Accordingly, blood flow redistribution is a common phenomenon in the postoperative period and is only marginally influenced by endotoxemia. Fluid management based on SV changes may not be useful for improving regional abdominal perfusion.
Resumo:
Background Moraxella catarrhalis, a major nasopharyngeal pathogen of the human respiratory tract, is exposed to rapid downshifts of environmental temperature when humans breathe cold air. It was previously shown that the prevalence of pharyngeal colonization and respiratory tract infections caused by M. catarrhalis are greatest in winter. The aim of this study was to investigate how M. catarrhalis uses the physiologic exposure to cold air to upregulate pivotal survival systems in the pharynx that may contribute to M. catarrhalis virulence. Results A 26°C cold shock induces the expression of genes involved in transferrin and lactoferrin acquisition, and enhances binding of these proteins on the surface of M. catarrhalis. Exposure of M. catarrhalis to 26°C upregulates the expression of UspA2, a major outer membrane protein involved in serum resistance, leading to improved binding of vitronectin which neutralizes the lethal effect of human complement. In contrast, cold shock decreases the expression of Hemagglutinin, a major adhesin, which mediates B cell response, and reduces immunoglobulin D-binding on the surface of M. catarrhalis. Conclusion Cold shock of M. catarrhalis induces the expression of genes involved in iron acquisition, serum resistance and immune evasion. Thus, cold shock at a physiologically relevant temperature of 26°C induces in M. catarrhalis a complex of adaptive mechanisms that enables the bacterium to target their host cellular receptors or soluble effectors and may contribute to enhanced growth, colonization and virulence.
Resumo:
Low cardiac output impairs the hepatic arterial buffer response (HABR). Whether this is due to low abdominal blood flow per se is not known. Dobutamine is commonly used to increase cardiac output, and it may further modify hepatosplanchnic and renal vasoregulation. We assessed the effects of isolated abdominal aortic blood flow changes and dobutamine on hepatosplanchnic and renal blood flow. Twenty-five anesthetized pigs with an abdominal aorto-aortic shunt were randomized to 2 control groups [zero (n = 6) and minimal (n = 6) shunt flow], and 2 groups with 50% reduction of abdominal blood flow and either subsequent increased abdominal blood flow by shunt reduction (n = 6) or dobutamine infusion at 5 and 10 microg kg(-1) min(-1) with constant shunt flow (n = 7). Regional (ultrasound) and local (laser Doppler) intra-abdominal blood flows were measured. The HABR was assessed during acute portal vein occlusion. Sustained low abdominal blood flow, by means of shunt activation, decreased liver, gut, and kidney blood flow similarly and reduced local microcirculatory blood flow in the jejunum. Shunt flow reduction partially restored regional blood flows but not jejunal microcirculatory blood flow. Low-but not high-dose dobutamine increased gut and celiac trunk flow whereas hepatic artery and renal blood flows remained unchanged. Neither intervention altered local blood flows. The HABR was not abolished during sustained low abdominal blood flow despite substantially reduced hepatic arterial blood flow and was not modified by dobutamine. Low-but not high-dose dobutamine redistributes blood flow toward the gut and celiac trunk. The jejunal microcirculatory flow, once impaired, is difficult to restore.
Resumo:
INTRODUCTION: This study was designed to examine differences in the arteriolar vasoconstrictive response between arginine vasopressin (AVP) and norepinephrine (NE) on the microcirculatory level in the hamster window chamber model in unanesthetized, normotonic hamsters using intravital microscopy. It is known from patients with advanced vasodilatory shock that AVP exerts strong additional vasoconstriction when incremental dosage increases of NE have no further effect on mean arterial blood pressure (MAP). METHODS: In a prospective controlled experimental study, eleven awake, male golden Syrian hamsters were instrumented with a viewing window inserted into the dorsal skinfold. NE (2 microg/kg/minute) and AVP (0.0001 IU/kg/minute, equivalent to 4 IU/h in a 70 kg patient) were continuously infused to achieve a similar increase in MAP. According to their position within the arteriolar network, arterioles were grouped into five types: A0 (branch off small artery) to A4 (branch off A3 arteriole). RESULTS: Reduction of arteriolar diameter (NE, -31 +/- 12% versus AVP, -49 +/- 7%; p = 0.002), cross sectional area (NE, -49 +/- 17% versus AVP, -73 +/- 7%; p = 0.002), and arteriolar blood flow (NE, -62 +/- 13% versus AVP, -80 +/- 6%; p = 0.004) in A0 arterioles was significantly more pronounced in AVP animals. There was no difference in red blood cell velocities in A0 arterioles between groups. The reduction of diameter, cross sectional area, red blood cell velocity, and arteriolar blood flow in A1 to A4 arterioles was comparable in AVP and NE animals. CONCLUSION: Within the microvascular network, AVP exerted significantly stronger vasoconstriction on large A0 arterioles than NE under physiological conditions. This observation may partly explain why AVP is such a potent vasopressor hormone and can increase systemic vascular resistance even in advanced vasodilatory shock unresponsive to increases in standard catecholamine therapy.
Resumo:
BACKGROUND Moraxella catarrhalis, a major nasopharyngeal pathogen of the human respiratory tract, is exposed to rapid downshifts of environmental temperature when humans breathe cold air. The prevalence of pharyngeal colonization and respiratory tract infections caused by M. catarrhalis is greatest in winter. We investigated how M. catarrhalis uses the physiologic exposure to cold air to regulate pivotal survival systems that may contribute to M. catarrhalis virulence. RESULTS In this study we used the RNA-seq techniques to quantitatively catalogue the transcriptome of M. catarrhalis exposed to a 26 °C cold shock or to continuous growth at 37 °C. Validation of RNA-seq data using quantitative RT-PCR analysis demonstrated the RNA-seq results to be highly reliable. We observed that a 26 °C cold shock induces the expression of genes that in other bacteria have been related to virulence a strong induction was observed for genes involved in high affinity phosphate transport and iron acquisition, indicating that M. catarrhalis makes a better use of both phosphate and iron resources after exposure to cold shock. We detected the induction of genes involved in nitrogen metabolism, as well as several outer membrane proteins, including ompA, m35-like porin and multidrug efflux pump (acrAB) indicating that M. catarrhalis remodels its membrane components in response to downshift of temperature. Furthermore, we demonstrate that a 26 °C cold shock enhances the induction of genes encoding the type IV pili that are essential for natural transformation, and increases the genetic competence of M. catarrhalis, which may facilitate the rapid spread and acquisition of novel virulence-associated genes. CONCLUSION Cold shock at a physiologically relevant temperature of 26 °C induces in M. catarrhalis a complex of adaptive mechanisms that could convey novel pathogenic functions and may contribute to enhanced colonization and virulence.