852 resultados para coat hangers
Resumo:
Advances in biomaterials have enabled medical practitioners to replace diseased body parts or to assist in the healing process. In situations where a permanent biomaterial implant is used for a temporary application, additional surgeries are required to remove these implants once the healing process is complete, which increases medical costs and patient morbidity. Bio-absorbable materials dissolve and are metabolized by the body after the healing process is complete thereby negating additional surgeries for removal of implants. Magnesium alloys as novel bio-absorbable biomaterials, have attracted great attention recently because of their good mechanical properties, biocompatibility and corrosion rate in physiological environments. However, usage of Mg as biodegradable implant has been limited by its poor corrosion resistance in the physiological solutions. An optimal biodegradable implant must initially have slow degradation to ensure total mechanical integrity then degrade over time as the tissue heals. The current research focuses on surface modification of Mg alloy (MZC) by surface treatment and polymer coating in an effort to enhance the corrosion rate and biocompatibility. It is envisaged that the results obtained from this investigation would provide the academic community with insights for the utilization of bio-absorbable implants particularly for patients suffering from atherosclerosis. The alloying elements used in this study are zinc and calcium both of which are essential minerals in the human metabolic and healing processes. A hydrophobic biodegradable co-polymer, polyglycolic-co-caprolactone (PGCL), was used to coat the surface treated MZC to retard the initial degradation rate. Two surface treatments were selected: (a) acid etching and (b) anodization to produce different surface morphologies, roughness, surface energy, chemistry and hydrophobicity that are pivotal for PGCL adhesion onto the MZC. Additionally, analyses of biodegradation, biocompatibility, and mechanical integrity were performed in order to investigate the optimum surface modification process, suitable for biomaterial implants. The study concluded that anodization created better adhesion between the MZC and PGCL coating. Furthermore, PGCL coated anodized MZC exhibited lower corrosion rate, good mechanical integrity, and better biocompatibility as compared with acid etched.
Resumo:
The Last Interglacial (LIG, 129-116 thousand of years BP, ka) represents a test bed for climate model feedbacks in warmer-than-present high latitude regions. However, mainly because aligning different palaeoclimatic archives and from different parts of the world is not trivial, a spatio-temporal picture of LIG temperature changes is difficult to obtain. Here, we have selected 47 polar ice core and sub-polar marine sediment records and developed a strategy to align them onto the recent AICC2012 ice core chronology. We provide the first compilation of high-latitude temperature changes across the LIG associated with a coherent temporal framework built between ice core and marine sediment records. Our new data synthesis highlights non-synchronous maximum temperature changes between the two hemispheres with the Southern Ocean and Antarctica records showing an early warming compared to North Atlantic records. We also observe warmer than present-day conditions that occur for a longer time period in southern high latitudes than in northern high latitudes. Finally, the amplitude of temperature changes at high northern latitudes is larger compared to high southern latitude temperature changes recorded at the onset and the demise of the LIG. We have also compiled four data-based time slices with temperature anomalies (compared to present-day conditions) at 115 ka, 120 ka, 125 ka and 130 ka and quantitatively estimated temperature uncertainties that include relative dating errors. This provides an improved benchmark for performing more robust model-data comparison. The surface temperature simulated by two General Circulation Models (CCSM3 and HadCM3) for 130 ka and 125 ka is compared to the corresponding time slice data synthesis. This comparison shows that the models predict warmer than present conditions earlier than documented in the North Atlantic, while neither model is able to produce the reconstructed early Southern Ocean and Antarctic warming. Our results highlight the importance of producing a sequence of time slices rather than one single time slice averaging the LIG climate conditions.
Resumo:
Several tests that evaluate the quality of seeds are destructive and require time, which is considered long and expensive in the processes that involves the production and marketing of seed. Thus, techniques that allow reducing the time related to assess the quality of seed lots is very favorable, considering the technical, economic and scientific point of view. The techniques images of seed analyzed both by X-ray such as digital images, represent alternative for this sector, and are considered reproducible and fast, giving greater flexibility and autonomy to the activities of production systems. Summarily, the objective was to analyze the internal morphology of seeds of this species through x-rayed images and the efficiency of weed seed area increased during soaking through image analysis and compare them with the results of germination tests and force the evaluation of physiological seed quality. For X-ray tests, the seeds were exposed for 0.14 seconds at radiation 40kV and 2.0 mAs. Were analyzed images using the ImageJ program and subsequently put to germinate in B.O.D chamber at 27 ° C, in which there was the comparison of results for germination. To determine the test area increase (% IA), seeds were used with and without seed coat, maintained the B.O.D chamber at 15 ° to 20 ° C, the seeds were photographed before and after the soaking period, the results were compared to the germination rates. For the X-ray test, it was observed that seeds with empty area greater than 20%, showed a higher percentage of abnormal seedlings. And the area increment analysis showed that it is possible to rank the batch after 8 hours of imbibition at 15 ° C according to the germination and vigor tests
Resumo:
Melanocytic nevi (MNs) are benign melanocytic proliferations of cells, which can be found in the skin and mucous coat, including the oral mucosa. However, skin NMs are more common when compared to those that affect the oral mucosa. The molecular mechanisms involved in the development of nevi and the factors that can influence the migration pattern of the nevus cells are little explored. The aim of this study was to analyze the immunohistochemical expression of E-cadherin protein and Bcl-2 in oral / skin NMs and relate them to the clinical characteristics (gender, age, location, exposure to solar radiation) and histopathological types. 36 cases of oral NMs and 34 Skin NMs were analyzed. The immunohistochemistry was used of the protein E-cadherin and bcl-2, which were analyzed the intensity (weak, moderate and strong) and distribution marking (diffuse and focal). The immunoreactivity also analyzed as to the types of nevus cells (epithelioid cells -A, -B lymphocyte and fibroblast-like -C). Statistical analysis was performed using the chi-square tests of Pearson and Spearman correlation with significance level set at 5%. Of the 70 cases of NMs, 82.9% were female, 48.6% aged 26-50 years, 51.4% were diagnosed histologically as intradermal / intramucosal nevi and 80% were NMs acquired. Immunohistochemical expression of BCL2 and E-cadherin were variables in the sample and showed no association with clinical parameters. The expression of bcl-2 and E-cadherin were variable according to the types of nevus cells (A, B and C) (P = 0.001). The expression of bcl-2 was more diffuse in congenital MNs (p = 0.002). E-cadherin was positive in 83.3% of MNs <1cm (p = 0.001) and exhibited weak staining in 73.9% of MNs that were in exposed areas (p = 0.010). Based on these results, it is suggested that the E-cadherin has a modulating effect on the migratory properties of NMs, and bcl-2 is a marker of MNs with increased proliferative capacity.
Resumo:
Atomisation of an aqueous solution for tablet film coating is a complex process with multiple factors determining droplet formation and properties. The importance of droplet size for an efficient process and a high quality final product has been noted in the literature, with smaller droplets reported to produce smoother, more homogenous coatings whilst simultaneously avoiding the risk of damage through over-wetting of the tablet core. In this work the effect of droplet size on tablet film coat characteristics was investigated using X-ray microcomputed tomography (XμCT) and confocal laser scanning microscopy (CLSM). A quality by design approach utilising design of experiments (DOE) was used to optimise the conditions necessary for production of droplets at a small (20 μm) and large (70 μm) droplet size. Droplet size distribution was measured using real-time laser diffraction and the volume median diameter taken as a response. DOE yielded information on the relationship three critical process parameters: pump rate, atomisation pressure and coating-polymer concentration, had upon droplet size. The model generated was robust, scoring highly for model fit (R2 = 0.977), predictability (Q2 = 0.837), validity and reproducibility. Modelling confirmed that all parameters had either a linear or quadratic effect on droplet size and revealed an interaction between pump rate and atomisation pressure. Fluidised bed coating of tablet cores was performed with either small or large droplets followed by CLSM and XμCT imaging. Addition of commonly used contrast materials to the coating solution improved visualisation of the coating by XμCT, showing the coat as a discrete section of the overall tablet. Imaging provided qualitative and quantitative evidence revealing that smaller droplets formed thinner, more uniform and less porous film coats.
Resumo:
The realization of an energy future based on safe, clean, sustainable, and economically viable technologies is one of the grand challenges facing modern society. Electrochemical energy technologies underpin the potential success of this effort to divert energy sources away from fossil fuels, whether one considers alternative energy conversion strategies through photoelectrochemical (PEC) production of chemical fuels or fuel cells run with sustainable hydrogen, or energy storage strategies, such as in batteries and supercapacitors. This dissertation builds on recent advances in nanomaterials design, synthesis, and characterization to develop novel electrodes that can electrochemically convert and store energy.
Chapter 2 of this dissertation focuses on refining the properties of TiO2-based PEC water-splitting photoanodes used for the direct electrochemical conversion of solar energy into hydrogen fuel. The approach utilized atomic layer deposition (ALD); a growth process uniquely suited for the conformal and uniform deposition of thin films with angstrom-level thickness precision. ALD’s thickness control enabled a better understanding of how the effects of nitrogen doping via NH3 annealing treatments, used to reduce TiO2’s bandgap, can have a strong dependence on TiO2’s thickness and crystalline quality. In addition, it was found that some of the negative effects on the PEC performance typically associated with N-doped TiO2 could be mitigated if the NH3-annealing was directly preceded by an air-annealing step, especially for ultrathin (i.e., < 10 nm) TiO2 films. ALD was also used to conformally coat an ultraporous conductive fluorine-doped tin oxide nanoparticle (nanoFTO) scaffold with an ultrathin layer of TiO2. The integration of these ultrathin films and the oxide nanoparticles resulted in a heteronanostructure design with excellent PEC water oxidation photocurrents (0.7 mA/cm2 at 0 V vs. Ag/AgCl) and charge transfer efficiency.
In Chapter 3, two innovative nanoarchitectures were engineered in order to enhance the pseudocapacitive energy storage of next generation supercapacitor electrodes. The morphology and quantity of MnO2 electrodeposits was controlled by adjusting the density of graphene foliates on a novel graphenated carbon nanotube (g-CNT) scaffold. This control enabled the nanocomposite supercapacitor electrode to reach a capacitance of 640 F/g, under MnO2 specific mass loading conditions (2.3 mg/cm2) that are higher than previously reported. In the second engineered nanoarchitecture, the electrochemical energy storage properties of a transparent electrode based on a network of solution-processed Cu/Ni cores/shell nanowires (NWs) were activated by electrochemically converting the Ni metal shell into Ni(OH)2. Furthermore, an adjustment of the molar percentage of Ni plated onto the Cu NWs was found to result in a tradeoff between capacitance, transmittance, and stability of the resulting nickel hydroxide-based electrode. The nominal area capacitance and power performance results obtained for this Cu/Ni(OH)2 transparent electrode demonstrates that it has significant potential as a hybrid supercapacitor electrode for integration into cutting edge flexible and transparent electronic devices.
Resumo:
Nanotechnology is a multidisciplinary science that is having a boom today, providing new products with attractive physicochemical properties for many applications. In agri/feed/food sector, nanotechnology offers great opportunities for obtaining products and innovative applications for agriculture and livestock, water treatment and the production, processing, storage and packaging of food. To this end, a wide variety of nanomaterials, ranging from metals and inorganic metal oxides to organic nanomaterials carrying bioactive ingredients are applied. This review shows an overview of current and future applications of nanotechnology in the food industry. Food additives and materials in contact with food are now the main applications, while it is expected that in the future are in the field of nano-encapsulated and nanocomposites in applications as novel foods, additives, biocides, pesticides and materials food contact.
Resumo:
El doble aspecto documental y artístico de la escritura de la historia ha quedado prácticamente oculto por la insistencia en el carácter científico de la disciplina y su expulsión subsiguiente del canon literario desde el siglo XIX. El cultivo de la historiografía ficticia o imaginaria (fictohistoria) surgió entonces como un modo de salvar la literariedad de la historia, en su calidad de género formal, mediante el uso del discurso historiográfico como procedimiento retórico para conseguir un efecto de historicidad en textos que son, no obstante, claramente ficticios, y que tienen a menudo un carácter satírico o admonitorio. Esto no está reñido con el hecho de que la mayoría manifieste en primer lugar una reflexión sobre el devenir de la humanidad, es decir, sobre la Historia. Los ejemplos de este género son relativamente abundantes y se pueden clasificar en varias categorías temáticas. Esta segunda parte del estudio se centra en la historia prospectiva.
Resumo:
Fasciola hepatica, commonly known as liver fluke, is a trematode which causes Fasciolosis in ruminants and humans. The outer tegumental coat of F. hepatica (FhTeg) is a complex metabolically active biological matrix that is continually exposed to the host immune system and therefore makes a good vaccine target. F. hepatica tegumental coat is highly glycosylated and helminth-derived immunogenic oligosaccharide motifs and glycoproteins are currently being investigated as novel vaccine candidates. This report presents the first systematic characterisation of FhTeg glycosylation using lectin microarrays to characterise carbohydrates motifs present, and lectin histochemistry to localize these on the F. hepatica tegument. We discovered that FhTeg glycoproteins are predominantly oligomannose oligosaccharides that are expressed on the spines, suckers and tegumental coat of F. hepatica and lectin blot analysis confirmed the abundance of N- glycosylated proteins. While some oligosaccharides are widely distributed on the fluke surface other subsets are restricted to distinct anatomical regions. We selectively enriched for FhTeg mannosylated glycoprotein subsets using lectin affinity chromatography and identified 369 proteins by mass spectrometric analysis. Among these proteins are a number of potential vaccine candidates with known immune modulatory properties including proteases, protease inhibitors, paramyosin, Venom Allergen-like II, Enolase and two proteins, nardilysin and TRIL, that have not been previously associated with F. hepatica Furthermore, we provide a comprehensive insight regarding the putative glycosylation of FhTeg components which could highlight the importance of further studies examining glycoconjugates in host-parasite interactions in the context of F. hepatica infection and the development of an effective vaccine.
Resumo:
Introduction The objectives of this thesis are to: (1) examine how ambulatory blood pressure monitoring (ABPM) refines office blood pressure (BP) measurement; (2) determine if absolute ambulatory BP or dipping status is better associated with target organ damage (TOD); (3) explore the association of isolated nocturnal hypertension (INH) with TOD; and (4) investigate the association of night-time BP with ultrasound markers of cardiovascular damage. Methods Data from the Mitchelstown Cohort Study was analysed to deliver objectives 1 and 2. Objective 3 was addressed by a systematic review and analysis of data from the Mitchelstown Study. A sample of participants from the Mitchelstown Study underwent an echocardiogram for speckle tracking analysis and carotid ultrasound to achieve objective 4. Results ABPM reclassifies hypertension status in approximately a quarter of individuals, with white coat and masked hypertension prevalence rates of 11% and 13% respectively. Night-time systolic BP is better associated with TOD than daytime systolic BP and dipping level. In multi-variable models the odds ratio (OR) for LVH was 1.4 (95% CI 1.1 -1.8) and for albumin:creatinine ratio ≥ 1.1 mg/mmol was 1.5 (95% CI 1.2 – 1.8) for each 10 mmHg rise in night-time systolic BP. The evidence for the association of INH with TOD is inconclusive. Night-time systolic BP is significantly associated with global longitudinal strain (GLS) (beta coefficient 0.85 for every 10 mmHg rise, 95% CI 0.3 – 1.4) and carotid plaques (OR 1.9 for every 10 mmHg rise, 95% CI 1.1 – 3.2) in univariable analysis. The findings persist for GLS in sex and age adjusted models but not in multivariable models. Discussion Hypertension cannot be effectively managed without using ABPM. Night-time systolic BP is better associated with TOD than daytime systolic BP and dipping level, and therefore, may be a better therapeutic target in future studies.
Resumo:
The objective of this dissertation is to explore a more accurate and versatile approach to investigating the neutralization of spores suffered from ultrafast heating and biocide based stresses, and further to explore and understand novel methods to supply ultrafast heating and biocides through nanostructured energetic materials A surface heating method was developed to apply accurate (± 25 ˚C), high heating rate thermal energy (200 - 800 ˚C, ~103 - ~105 ˚C/s). Uniform attachment of bacterial spores was achieved electrophoretically onto fine wires in liquids, which could be quantitatively detached into suspension for spore enumeration. The spore inactivation increased with temperature and heating rate, and fit a sigmoid response. The neutralization mechanisms of peak temperature and heating rate were correlated to the DNA damage at ~104 ˚C/s, and to the coat rupture by ultrafast vapor pressurization inside spores at ~105 ˚C/s. Humidity was found to have a synergistic effect of rapid heating and chlorine gas to neutralization efficiency. The primary neutralization mechanism of Cl2 and rapid heat is proposed to be chlorine reacting with the spore surface. The stress-kill correlation above provides guidance to explore new biocidal thermites, and to probe mechanisms. Results show that nano-Al/K2S2O8 released more gas at a lower temperature and generated a higher maximum pressure than the other nano-Al/oxysalts. Given that this thermite formulation generates the similar amount of SO2 as O2, it can be considered as a potential candidate for use in energetic biocidal applications. The reaction mechanisms of persulfate and other oxysalts containing thermites can be divided into two groups, with the reactive thermites (e.g. Al/K2S2O8) that generate ~10× higher of pressure and ~10× shorter of burn time ignited via a solid-gas Al/O2 reaction, while the less reactive thermites (e.g. Al/K2SO4) following a condensed phase Al/O reaction mechanism. These different ignition mechanisms were further re-evaluated by investigating the roles of free and bound oxygen. A constant critical reaction rate for ignition was found which is independent to ignition temperature, heating rate and free vs. bound oxygen.
Resumo:
Autologous nerve grafts are the current gold standard for the repair of peripheral nerve injuries. However, there is a need to develop an alternative to this technique, as donor-site morbidities such as neuroma formation and permanent loss of function are a few of the limitations concerned with this technique. Artificial nerve conduits have therefore emerged as an alternative for the repair of short peripheral nerve defects of less than 30 mm, however they do not surpass autologous nerve grafts clinically. To develop a nerve conduit that supports regeneration over long nerve gaps and in large diameter nerves, researchers have focused on functionalizing of the conduits by studying the components that enhance nerve regeneration such as micro/nano-topography, growth factor delivery systems, supportive cells and extracellular matrix (ECM) proteins as well as understanding the complex biological reactions that take place during peripheral nerve regeneration. This thesis presents strategies to improve peripheral nerve interfaces to better the regenerative potential by using dorsal root ganglions (DRGs) isolated from neonatal rats as an in vitro model of nerve regeneration. The work started off by investigating the usefulness of a frog foam protein Ranaspumin-2 (Rsn2) to coat biomaterials for compatibility, this lead to the discovery of temporary cell adhesion on polydimethylsiloxane (PDMS), which was investigated as a suitable tool to derive cell-sheets for nerve repair. The influence of Rsn2 anchored to specific adhesion peptide sequences, such as isoleucine-lysine-valine-alanine-valine (IKVAV), a sequence derived from laminin proven to promote cell adhesion and neurite outgrowth, was tested as a useful means to influence nerve regeneration. This approach improves the axonal outgrowth and maintains outgrowth long term. Based on the hypothesis that combinational modulation of substrate topography, stiffness and neurotrophic support, affects axonal outgrowth in whole DRGs, dissociated DRGs were used to assess if these factors similarly act at the single cell level. Rho associated protein kinase (ROCK) and myosin II inhibitors, which affect cytoskeletal contractility, were used to influence growth cone traction forces and have shown that these factors work in combination by interfering with growth cone dynamic creating a different response in axonal outgrowth at the single cell level.
Resumo:
Estudio cuasiexperimental en 50 pacientes tuberculosos ingresados en el Hospital Neumológico y 50 voluntarios aparentemente sanos de la ciudad de Cuenca, para determinar el cortisol basal y sus valores a las 8. 24 y 36 horas luego de la estimulación con ACTH (Synacthen Depot) a la dosis de 0.5 miligramos vía muscular. Todos los individuos de estudio tuvieron entre 20 y 50 años y no haïbían recibido medicación corticoide por lo menos 15 días antes del estudio. La determinación del cortisol se hizo por radioinmunoanálisis con Coat-A Count Cortisol, siguiendo los procedimientos indicados por el laboratorio. Las cifras de cortisol basal en los individuos sanos son de 13.94 +- 5.78 ug/dl. y en los tuberculosos de 17.83+- 6.75 ug/dl, siendo la diferencia estadísticamente significativa (p menor que 0.001) Considerando los sexos, los valores de cortisol entre hombres y mujeres no son estadísticamente diferentes. A las 8 horas luego de la estimulación con ACTH el 90de los individuos aparentemente sanos y el 74de los tubeculosos presentan una respuesta adecuada a la estimulación, ya que duplican o triplican los valores basales. En la determinación de cortisol a las 24 horas un 46de individuos en ambos grupos no llegan a duplicar los valores y a las 36 horas únicamente duplican el 26de los individuos salos y el 20de los tuberculosos por lo que se hace innecesaria su determinación. Considerando que en los tuberculosos las cifras están elevadas y que esta enfermedad suele acompañarse de deficiencias nutritivas, se recomienda realizar estudios en pacientes con diferentes grados y tipos de desnutrición
Resumo:
Con un diseño cuasiexperimental se realizó un estudio clínico en el hopital Vicente Corral de Cuenca que incluyó 80 pacientes de ambos sexos asignados a dos grupos: 1.- grupo COLELAP formado por cuarenta pacientes a los que se realizó colecistectomía laparoscópica y 2.- grupo CONVENC formado por 40 pacientes a los que se realizó colecistectomía abierta. El procedimiento fue similar para ambos grupos. En los dos grupos se midieron a.- los niveles de cortisol prequirúrgico y posquirúrgico mediante radioinmunoanálisis [Coat-A cortisol r], b.- El dolor antes y después de la cirugía mediante una escala visual y c.- La estadía hospitalaria y las complicaciones. No hubieron diferencias estadísticamente significativas en cuanto a edad, género, procedencia, nivel de instrucción, dolor preoperatro y valoraciones sanguíneas de laboratorio. Los valores de cortisol del grupo COLELAP fueron inferiores a los del grupo CONVENC tanto en el preoperatorio 9.40 más menos 4.81 vs. 20.11 más menos 8.87 [p = 0.001] como en el postoperatorio 12.19 más menos 4.12 vs. 22.1 más menos 7.31 [p=0.0001], sin embargo en el grupo COLELAP el aumento promedio [2.8 mcg/dL vs 1.99 mcg/dL fue mayor. El dolor preoperatorio evaluado mediante una escala análoga visual fue igual en ambos grupos [p=0.22] pero en el postoperatorio fue menor en el grupo COLELAP [p=0.012]. El tiempo quirúrgico promedio fue mayor para el grupo CONVENC [82.25 más menos 31.66 min vs 63.5 más menos 31.23 min] [p=0.0005]. El 90 por ciento de los pacientes del grupo fue de 3.1 más menos días y para el grupo CONVENC de 4.8 más menos 0.87 días. La diferencia fue altamente significativa [p=0.00001]. En conclusión laparoscópica muestra significativas ventajas frente a la colecistectomía abierta; a.- Minimiza el trauma quirúrgico, b.- produce menor dolor postoperatorio y c.- disminuye la estadía hospitalaria