947 resultados para Mutual Impedance
Resumo:
Dissertação de Mestrado apresentada ao Instituto de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Contabilidade e Finanças, sob orientação de Doutora Deolinda Meira e Doutora Nina Aguiar
Resumo:
Dissertação de Mestrado apresentado ao Instituto Superior de Contabilidade e Administração do Porto para obtenção de grau de Mestre em Empreendedorismo e Internacionalização, sob a orientação da Professora Doutora Manuela Maria Ribeiro da Silva Patrício
Resumo:
Trabalho apresentado no âmbito do European Master in Computational Logics, como requisito parcial para obtenção do grau de Mestre em Computational Logics
Resumo:
The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.
Resumo:
Hyperspectral remote sensing exploits the electromagnetic scattering patterns of the different materials at specific wavelengths [2, 3]. Hyperspectral sensors have been developed to sample the scattered portion of the electromagnetic spectrum extending from the visible region through the near-infrared and mid-infrared, in hundreds of narrow contiguous bands [4, 5]. The number and variety of potential civilian and military applications of hyperspectral remote sensing is enormous [6, 7]. Very often, the resolution cell corresponding to a single pixel in an image contains several substances (endmembers) [4]. In this situation, the scattered energy is a mixing of the endmember spectra. A challenging task underlying many hyperspectral imagery applications is then decomposing a mixed pixel into a collection of reflectance spectra, called endmember signatures, and the corresponding abundance fractions [8–10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. Linear mixing model holds approximately when the mixing scale is macroscopic [13] and there is negligible interaction among distinct endmembers [3, 14]. If, however, the mixing scale is microscopic (or intimate mixtures) [15, 16] and the incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [17], the linear model is no longer accurate. Linear spectral unmixing has been intensively researched in the last years [9, 10, 12, 18–21]. It considers that a mixed pixel is a linear combination of endmember signatures weighted by the correspondent abundance fractions. Under this model, and assuming that the number of substances and their reflectance spectra are known, hyperspectral unmixing is a linear problem for which many solutions have been proposed (e.g., maximum likelihood estimation [8], spectral signature matching [22], spectral angle mapper [23], subspace projection methods [24,25], and constrained least squares [26]). In most cases, the number of substances and their reflectances are not known and, then, hyperspectral unmixing falls into the class of blind source separation problems [27]. Independent component analysis (ICA) has recently been proposed as a tool to blindly unmix hyperspectral data [28–31]. ICA is based on the assumption of mutually independent sources (abundance fractions), which is not the case of hyperspectral data, since the sum of abundance fractions is constant, implying statistical dependence among them. This dependence compromises ICA applicability to hyperspectral images as shown in Refs. [21, 32]. In fact, ICA finds the endmember signatures by multiplying the spectral vectors with an unmixing matrix, which minimizes the mutual information among sources. If sources are independent, ICA provides the correct unmixing, since the minimum of the mutual information is obtained only when sources are independent. This is no longer true for dependent abundance fractions. Nevertheless, some endmembers may be approximately unmixed. These aspects are addressed in Ref. [33]. Under the linear mixing model, the observations from a scene are in a simplex whose vertices correspond to the endmembers. Several approaches [34–36] have exploited this geometric feature of hyperspectral mixtures [35]. Minimum volume transform (MVT) algorithm [36] determines the simplex of minimum volume containing the data. The method presented in Ref. [37] is also of MVT type but, by introducing the notion of bundles, it takes into account the endmember variability usually present in hyperspectral mixtures. The MVT type approaches are complex from the computational point of view. Usually, these algorithms find in the first place the convex hull defined by the observed data and then fit a minimum volume simplex to it. For example, the gift wrapping algorithm [38] computes the convex hull of n data points in a d-dimensional space with a computational complexity of O(nbd=2cþ1), where bxc is the highest integer lower or equal than x and n is the number of samples. The complexity of the method presented in Ref. [37] is even higher, since the temperature of the simulated annealing algorithm used shall follow a log( ) law [39] to assure convergence (in probability) to the desired solution. Aiming at a lower computational complexity, some algorithms such as the pixel purity index (PPI) [35] and the N-FINDR [40] still find the minimum volume simplex containing the data cloud, but they assume the presence of at least one pure pixel of each endmember in the data. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. PPI algorithm uses the minimum noise fraction (MNF) [41] as a preprocessing step to reduce dimensionality and to improve the signal-to-noise ratio (SNR). The algorithm then projects every spectral vector onto skewers (large number of random vectors) [35, 42,43]. The points corresponding to extremes, for each skewer direction, are stored. A cumulative account records the number of times each pixel (i.e., a given spectral vector) is found to be an extreme. The pixels with the highest scores are the purest ones. N-FINDR algorithm [40] is based on the fact that in p spectral dimensions, the p-volume defined by a simplex formed by the purest pixels is larger than any other volume defined by any other combination of pixels. This algorithm finds the set of pixels defining the largest volume by inflating a simplex inside the data. ORA SIS [44, 45] is a hyperspectral framework developed by the U.S. Naval Research Laboratory consisting of several algorithms organized in six modules: exemplar selector, adaptative learner, demixer, knowledge base or spectral library, and spatial postrocessor. The first step consists in flat-fielding the spectra. Next, the exemplar selection module is used to select spectral vectors that best represent the smaller convex cone containing the data. The other pixels are rejected when the spectral angle distance (SAD) is less than a given thresh old. The procedure finds the basis for a subspace of a lower dimension using a modified Gram–Schmidt orthogonalizati on. The selected vectors are then projected onto this subspace and a simplex is found by an MV T pro cess. ORA SIS is oriented to real-time target detection from uncrewed air vehicles using hyperspectral data [46]. In this chapter we develop a new algorithm to unmix linear mixtures of endmember spectra. First, the algorithm determines the number of endmembers and the signal subspace using a newly developed concept [47, 48]. Second, the algorithm extracts the most pure pixels present in the data. Unlike other methods, this algorithm is completely automatic and unsupervised. To estimate the number of endmembers and the signal subspace in hyperspectral linear mixtures, the proposed scheme begins by estimating sign al and noise correlation matrices. The latter is based on multiple regression theory. The signal subspace is then identified by selectin g the set of signal eigenvalue s that best represents the data, in the least-square sense [48,49 ], we note, however, that VCA works with projected and with unprojected data. The extraction of the end members exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. As PPI and N-FIND R algorithms, VCA also assumes the presence of pure pixels in the data. The algorithm iteratively projects data on to a direction orthogonal to the subspace spanned by the endmembers already determined. The new end member signature corresponds to the extreme of the projection. The algorithm iterates until all end members are exhausted. VCA performs much better than PPI and better than or comparable to N-FI NDR; yet it has a computational complexity between on e and two orders of magnitude lower than N-FINDR. The chapter is structure d as follows. Section 19.2 describes the fundamentals of the proposed method. Section 19.3 and Section 19.4 evaluate the proposed algorithm using simulated and real data, respectively. Section 19.5 presents some concluding remarks.
Resumo:
Dissertação de Mestrado em Solicitadoria
Resumo:
Dairy foods comprise a range of products with varying nutritional content. The intake of dairy products (DPs) has been shown to have beneficial effects on body weight and body fat. This study aimed to examine the independent association between DP intake, body mass index (BMI), and percentage body fat (%BF) in adolescents. A cross-sectional, school-based study was conducted with 1,001 adolescents (418 boys), ages 15–18 years, from the Azorean Archipelago, Portugal. Anthropometric measurements were recorded (weight and height), and %BF was assessed using bioelectric impedance analysis. Adolescent food intake was measured using a self-administered, semiquantitative food frequency questionnaire. Data were analyzed separately for girls and boys, and separate multiple linear regression analysis was used to estimate the association between total DP, milk, yogurt, and cheese intake, BMI, and %BF, adjusting for potential confounders. For boys and girls, respectively, total DP consumption was 2.6 ± 1.9 and 2.9 ± 2.5 servings/day (P = 0.004), while milk consumption was 1.7 ± 1.4 and 2.0 ± 1.7 servings/day (P = 0.001), yogurt consumption was 0.5 ± 0.6 and 0.4 ± 0.7 servings/day (P = 0.247), and cheese consumption was 0.4 ± 0.6 and 0.5 ± 0.8 servings/day (P = 0.081). After adjusting for age, birth weight, energy intake, protein, total fat, sugar, dietary fiber, total calcium intake, low-energy reporters, parental education, pubertal stage, and physical activity, only milk intake was negatively associated with BMI and %BF in girls (respectively, girls: β = −0.167, P = 0.013; boys: β = −0.019, P = 0.824 and girls: β = −0.143, P = 0.030; boys: β = −0.051, P = 0.548). Conclusion: We found an inverse association between milk intake and both BMI and %BF only in girls.
Resumo:
Este documento descreve um modelo de tolerância a falhas para sistemas de tempo-real distribuídos. A sugestão deste modelo tem como propósito a apresentação de uma solu-ção fiável, flexível e adaptável às necessidades dos sistemas de tempo-real distribuídos. A tolerância a falhas é um aspeto extremamente importante na construção de sistemas de tempo-real e a sua aplicação traz inúmeros benefícios. Um design orientado para a to-lerância a falhas contribui para um melhor desempenho do sistema através do melhora-mento de aspetos chave como a segurança, a confiabilidade e a disponibilidade dos sis-temas. O trabalho desenvolvido centra-se na prevenção, deteção e tolerância a falhas de tipo ló-gicas (software) e físicas (hardware) e assenta numa arquitetura maioritariamente basea-da no tempo, conjugada com técnicas de redundância. O modelo preocupa-se com a efi-ciência e os custos de execução. Para isso utilizam-se também técnicas tradicionais de to-lerância a falhas, como a redundância e a migração, no sentido de não prejudicar o tempo de execução do serviço, ou seja, diminuindo o tempo de recuperação das réplicas, em ca-so de ocorrência de falhas. Neste trabalho são propostas heurísticas de baixa complexida-de para tempo-de-execução, a fim de se determinar para onde replicar os componentes que constituem o software de tempo-real e de negociá-los num mecanismo de coordena-ção por licitações. Este trabalho adapta e estende alguns algoritmos que fornecem solu-ções ainda que interrompidos. Estes algoritmos são referidos em trabalhos de investiga-ção relacionados, e são utilizados para formação de coligações entre nós coadjuvantes. O modelo proposto colmata as falhas através de técnicas de replicação ativa, tanto virtual como física, com blocos de execução concorrentes. Tenta-se melhorar ou manter a sua qualidade produzida, praticamente sem introduzir overhead de informação significativo no sistema. O modelo certifica-se que as máquinas escolhidas, para as quais os agentes migrarão, melhoram iterativamente os níveis de qualidade de serviço fornecida aos com-ponentes, em função das disponibilidades das respetivas máquinas. Caso a nova configu-ração de qualidade seja rentável para a qualidade geral do serviço, é feito um esforço no sentido de receber novos componentes em detrimento da qualidade dos já hospedados localmente. Os nós que cooperam na coligação maximizam o número de execuções para-lelas entre componentes paralelos que compõem o serviço, com o intuito de reduzir atra-sos de execução. O desenvolvimento desta tese conduziu ao modelo proposto e aos resultados apresenta-dos e foi genuinamente suportado por levantamentos bibliográficos de trabalhos de in-vestigação e desenvolvimento, literaturas e preliminares matemáticos. O trabalho tem também como base uma lista de referências bibliográficas.
Resumo:
European Master Human Rights and Democratisation
Resumo:
Los procesos de acogimiento familiar que se producen en cada país dependen de factores históricos y culturales que dan lugar a grandes diferencias internacionales. A pesar de que las comparativas internacionales ofrecen un medio de intercambio de experiencias, lo que permite el aprendizaje mutuo y la transferencia de buenas prácticas, a menudo encontramos enormes barreras para su realización debido, entre otros factores, al limitado acceso a los datos sobre la práctica de la protección infantil. Frente a estas limitaciones, este artículo ofrece una investigación comparativa realizada en España y Portugal, cuyo objetivo ha sido la evaluación del acogimiento familiar en dos países donde la investigación en el ámbito de la protección infantil há sido tradicionalmente desatendida. Sobre una muestra de 357 casos en España y 289 en Portugal, se realizó un estudio del perfil de características de los niños acogidos, las familias de origen y los acogedores, así como de los procesos de acogida en ambos países. La comparativa reveló importantes diferencias relacionadas con la mayor edad al inicio del acogimiento de los niños en España; el perfil de los acogedores, con edades más avanzadas, un bajo nivel educativo y llevando a cabo acogidas de más de un niño simultaneamente en Portugal. El estudio comparado nos ha permitido identificar áreas que requieren mayor atención en ambos países, como la renovación generacional del banco de acogedores en Portugal o la necesidad de acelerar los procesos de toma de decisiones para la entrada en acogimiento familiar en España. Se pretende que este artículo sirva de aliento para la recogida de datos y comparación con otros países iberoamericanos.
Resumo:
Dissertation to Obtain the Degree of Master in Biomedical Engineering
Resumo:
This work proposes a novel approach for a suitable orientation of antibodies (Ab) on an immunosensing platform, applied here to the determination of 8-hydroxy-2′-deoxyguanosine (8OHdG), a biomarker of oxidative stress that has been associated to chronic diseases, such as cancer. The anti-8OHdG was bound to an amine modified gold support through its Fc region after activation of its carboxylic functions. Non-oriented approaches of Ab binding to the platform were tested in parallel, in order to show that the presented methodology favored Ab/Ag affinity and immunodetection of the antigen. The immunosensor design was evaluated by quartz-crystal microbalance with dissipation, atomic force microscopy, electrochemical impedance spectroscopy (EIS) and square-wave voltammetry. EIS was also a suitable technique to follow the analytical behavior of the device against 8OHdG. The affinity binding between 8OHdG and the antibody immobilized in the gold modified platform increased the charge transfer resistance across the electrochemical set-up. The observed behavior was linear from 0.02 to 7.0 ng/mL of 8OHdG concentrations. The interference from glucose, urea and creatinine was found negligible. An attempt of application to synthetic samples was also successfully conducted. Overall, the presented approach enabled the production of suitably oriented Abs over a gold platform by means of a much simpler process than other oriented-Ab binding approaches described in the literature, as far as we know, and was successful in terms of analytical features and sample application.
Resumo:
A new immunosensor is presented for human chorionic gonadotropin (hCG), made by electrodepositing chitosan/gold-nanoparticles over graphene screen-printed electrode (SPE). The antibody was covalently bound to CS via its Fc-terminal. The assembly was controlled by electrochemical Impedance Spectroscopy (EIS) and followed by Fourier Transformed Infrared (FTIR). The hCG-immunosensor displayed linear response against the logarithm-hCG concentration for 0.1–25 ng/mL with limit of detection of 0.016 ng/mL. High selectivity was observed in blank urine and successful detection of hCG was also achieved in spiked samples of real urine from pregnant woman. The immunosensor showed good detection capability, simplicity of fabrication, low-cost, high sensitivity and selectivity.
Resumo:
6th Graduate Student Symposium on Molecular Imprinting
Resumo:
1st ASPIC International Congress