952 resultados para Gelfand-Shilov Theorem
Resumo:
In this paper, we study the Reidemeister spectrum for metabelian groups of the form Q(n) x Z and Z[1/p](n) x Z. Particular attention is given to the R(infinity)-property of a subfamily of these groups.
Resumo:
Homogeneous polynomials of degree 2 on the complex Banach space c(0)(l(n)(2)) are shown to have unique norm-preserving extension to the bidual space. This is done by using M-projections and extends the analogous result for c(0) proved by P.-K. Lin.
Resumo:
We introduce a new class of noncommutative rings - Galois orders, realized as certain subrings of invariants in skew semigroup rings, and develop their structure theory. The class of Calms orders generalizes classical orders in noncommutative rings and contains many important examples, such as the Generalized Weyl algebras, the universal enveloping algebra of the general linear Lie algebra, associated Yangians and finite W-algebras (C) 2010 Elsevier Inc All rights reserved
Resumo:
We describe the simple Lie superalgebras arising from the unital structurable superalgebras of characteristic 0 and construct four series of the unital simple structurable superalgebras of Cartan type. We give a classification of simple structurable superalgebras of Cartan type over an algebraically closed field F of characteristic 0. Together with the Faulkner theorem on the classification of classical such superalgebras, it gives a classification of the simple structurable superalgebras over F. Crown Copyright (C) 2010 Published by Elsevier Inc. All rights reserved.
Resumo:
We study focal points and Maslov index of a horizontal geodesic gamma : I -> M in the total space of a semi-Riemannian submersion pi : M -> B by determining an explicit relation with the corresponding objects along the projected geodesic pi omicron gamma : I -> B in the base space. We use this result to calculate the focal Maslov index of a (spacelike) geodesic in a stationary spacetime which is orthogonal to a timelike Killing vector field.
Resumo:
We prove that the symplectic group Sp(2n, Z) and the mapping class group Mod(S) of a compact surface S satisfy the R(infinity) property. We also show that B(n)(S), the full braid group on n-strings of a surface S, satisfies the R(infinity) property in the cases where S is either the compact disk D, or the sphere S(2). This means that for any automorphism phi of G, where G is one of the above groups, the number of twisted phi-conjugacy classes is infinite.
Resumo:
We consider a continuous path of bounded symmetric Fredholm bilinear forms with arbitrary endpoints on a real Hilbert space, and we prove a formula that gives the spectral flow of the path in terms of the spectral flow of the restriction to a finite codimensional closed subspace. We also discuss the case of restrictions to a continuous path of finite codimensional closed subspaces. As an application of the formula, we introduce the notion of spectral flow for a periodic semi-Riemannian geodesic, and we compute its value in terms of the Maslov index. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
We prove a coordinatization theorem for noncommutative Jordan superalgebras of degree n > 2, describing such algebras. It is shown that the symmetrized Jordan superalgebra for a simple finite-dimensional noncommutative Jordan superalgebra of characteristic 0 and degree n > 1 is simple. Modulo a ""nodal"" case, we classify central simple finite-dimensional noncommutative Jordan superalgebras of characteristic 0.
Resumo:
Given a Lorentzian manifold (M,g), a geodesic gamma in M and a timelike Jacobi field Y along gamma, we introduce a special class of instants along gamma that we call Y-pseudo conjugate (or focal relatively to some initial orthogonal submanifold). We prove that the Y-pseudo conjugate instants form a finite set, and their number equals the Morse index of (a suitable restriction of) the index form. This gives a Riemannian-like Morse index theorem. As special cases of the theory, we will consider geodesics in stationary and static Lorentzian manifolds, where the Jacobi field Y is obtained as the restriction of a globally defined timelike Killing vector field.
Resumo:
In [19], [24] we introduced a family of self-similar nil Lie algebras L over fields of prime characteristic p > 0 whose properties resemble those of Grigorchuk and Gupta-Sidki groups. The Lie algebra L is generated by two derivations v(1) = partial derivative(1) + t(0)(p-1) (partial derivative(2) + t(1)(p-1) (partial derivative(3) + t(2)(p-1) (partial derivative(4) + t(3)(p-1) (partial derivative(5) + t(4)(p-1) (partial derivative(6) + ...))))), v(2) = partial derivative(2) + t(1)(p-1) (partial derivative(3) + t(2)(p-1) (partial derivative(4) + t(3)(p-1) (partial derivative(5) + t(4)(p-1) (partial derivative(6) + ...)))) of the truncated polynomial ring K[t(i), i is an element of N vertical bar t(j)(p) =0, i is an element of N] in countably many variables. The associative algebra A generated by v(1), v(2) is equipped with a natural Z circle plus Z-gradation. In this paper we show that for p, which is not representable as p = m(2) + m + 1, m is an element of Z, the algebra A is graded nil and can be represented as a sum of two locally nilpotent subalgebras. L. Bartholdi [3] andYa. S. Krylyuk [15] proved that for p = m(2) + m + 1 the algebra A is not graded nil. However, we show that the second family of self-similar Lie algebras introduced in [24] and their associative hulls are always Z(p)-graded, graded nil, and are sums of two locally nilpotent subalgebras.
Resumo:
Can Boutet de Monvel`s algebra on a compact manifold with boundary be obtained as the algebra Psi(0)(G) of pseudodifferential operators on some Lie groupoid G? If it could, the kernel G of the principal symbol homomorphism would be isomorphic to the groupoid C*-algebra C*(G). While the answer to the above question remains open, we exhibit in this paper a groupoid G such that C*(G) possesses an ideal I isomorphic to G. In fact, we prove first that G similar or equal to Psi circle times K with the C*-algebra Psi generated by the zero order pseudodifferential operators on the boundary and the algebra K of compact operators. As both Psi circle times K and I are extensions of C(S*Y) circle times K by K (S*Y is the co-sphere bundle over the boundary) we infer from a theorem by Voiculescu that both are isomorphic.
Resumo:
We consider polynomial identities satisfied by nonhomogeneous subalgebras of Lie and special Jordan superalgebras: we ignore the grading and regard the superalgebra as an ordinary algebra. The Lie case has been studied by Volichenko and Baranov: they found identities in degrees 3, 4 and 5 which imply all the identities in degrees <= 6. We simplify their identities in degree 5, and show that there are no new identities in degree 7. The Jordan case has not previously been studied: we find identities in degrees 3, 4, 5 and 6 which imply all the identities in degrees <= 6, and demonstrate the existence of further new identities in degree 7. our proofs depend on computer algebra: we use the representation theory of the symmetric group, the Hermite normal form of an integer matrix, the LLL algorithm for lattice basis reduction, and the Chinese remainder theorem. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Let M be a possibly noncompact manifold. We prove, generically in the C(k)-topology (2 <= k <= infinity), that semi-Riemannian metrics of a given index on M do not possess any degenerate geodesics satisfying suitable boundary conditions. This extends a result of L. Biliotti, M. A. Javaloyes and P. Piccione [6] for geodesics with fixed endpoints to the case where endpoints lie on a compact submanifold P subset of M x M that satisfies an admissibility condition. Such condition holds, for example, when P is transversal to the diagonal Delta subset of M x M. Further aspects of these boundary conditions are discussed and general conditions under which metrics without degenerate geodesics are C(k)-generic are given.
Resumo:
This work aims at combining the Chaos theory postulates and Artificial Neural Networks classification and predictive capability, in the field of financial time series prediction. Chaos theory, provides valuable qualitative and quantitative tools to decide on the predictability of a chaotic system. Quantitative measurements based on Chaos theory, are used, to decide a-priori whether a time series, or a portion of a time series is predictable, while Chaos theory based qualitative tools are used to provide further observations and analysis on the predictability, in cases where measurements provide negative answers. Phase space reconstruction is achieved by time delay embedding resulting in multiple embedded vectors. The cognitive approach suggested, is inspired by the capability of some chartists to predict the direction of an index by looking at the price time series. Thus, in this work, the calculation of the embedding dimension and the separation, in Takens‘ embedding theorem for phase space reconstruction, is not limited to False Nearest Neighbor, Differential Entropy or other specific method, rather, this work is interested in all embedding dimensions and separations that are regarded as different ways of looking at a time series by different chartists, based on their expectations. Prior to the prediction, the embedded vectors of the phase space are classified with Fuzzy-ART, then, for each class a back propagation Neural Network is trained to predict the last element of each vector, whereas all previous elements of a vector are used as features.
Resumo:
In this paper we describe our system for automatically extracting "correct" programs from proofs using a development of the Curry-Howard process. Although program extraction has been developed by many authors, our system has a number of novel features designed to make it very easy to use and as close as possible to ordinary mathematical terminology and practice. These features include 1. the use of Henkin's technique to reduce higher-order logic to many-sorted (first-order) logic; 2. the free use of new rules for induction subject to certain conditions; 3. the extensive use of previously programmed (total, recursive) functions; 4. the use of templates to make the reasoning much closer to normal mathematical proofs and 5. a conceptual distinction between the computational type theory (for representing programs)and the logical type theory (for reasoning about programs). As an example of our system we give a constructive proof of the well known theorem that every graph of even parity, which is non-trivial in the sense that it does not consist of isolated vertices, has a cycle. Given such a graph as input, the extracted program produces a cycle as promised.