On a formula for the spectral flow and its applications
| Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
|---|---|
| Data(s) |
20/10/2012
20/10/2012
2010
|
| Resumo |
We consider a continuous path of bounded symmetric Fredholm bilinear forms with arbitrary endpoints on a real Hilbert space, and we prove a formula that gives the spectral flow of the path in terms of the spectral flow of the restriction to a finite codimensional closed subspace. We also discuss the case of restrictions to a continuous path of finite codimensional closed subspaces. As an application of the formula, we introduce the notion of spectral flow for a periodic semi-Riemannian geodesic, and we compute its value in terms of the Maslov index. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim CNPq Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fapesp Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) |
| Identificador |
MATHEMATISCHE NACHRICHTEN, v.283, n.5, p.659-685, 2010 0025-584X http://producao.usp.br/handle/BDPI/30726 10.1002/mana.200710232 |
| Idioma(s) |
eng |
| Publicador |
WILEY-V C H VERLAG GMBH |
| Relação |
Mathematische Nachrichten |
| Direitos |
restrictedAccess Copyright WILEY-V C H VERLAG GMBH |
| Palavras-Chave | #Fredholm operators #spectral flow #periodic geodesic #semi-Riemannian manifolds #Maslov index #MASLOV INDEX #PART I #DECOMPOSITIONS #OPERATORS #MANIFOLDS #THEOREM #Mathematics |
| Tipo |
article original article publishedVersion |