983 resultados para Deep seismic reflection
Resumo:
Deep level transient spectroscopy measurements were used to characterize the electrical properties of metal organic chemical vapor deposition grown undoped, Er-implanted and Pr-implanted GaN films. Only one deep level located at 0.270 eV below the conduction band was found in the as-grown GaN films. But four defect levels located at 0.300 eV, 0.188 eV, 0.600 eV and 0.410 eV below the conduction band were found in the Er-implanted GaN films after annealing at 900 degrees C for 30 min, and four defect levels located at 0.280 eV, 0.190 eV, 0.610 eV and 0.390 eV below the conduction band were found in the Pr-implanted GaN films after annealing at 1050 degrees C for 30min. The origins of the deep defect levels are discussed. After annealing at 900 degrees C for 30min in a nitrogen flow, Er-related 1538nm luminescence peaks could be observed for the Er-implanted GaN sample. The energy-transfer and luminescence mechanism of the Er-implanted GaN film are described.
Resumo:
Deep levels in semi-insulating (SI) InP obtained by annealing in iron phosphide (IP) ambiance have been characterized by optical transient current spectroscopy (OTCS). Compared with the OTCS result of the SI InP prepared by annealing in pure phosphorus (PP) ambiance, the IP SI InP presents only two traps with activation energies of 0.20 and 0.63 eV, respectively. The results suggest that the diffusion of Fe-atoms suppresses the formation of a few defects in the IP SI InP. The nature of deep levels in the IP and PP SI InP has been discussed on the basis of these results. The relation between material property and defects in those SI InP has also been revealed. (C) 2002 American Institute of Physics.
Resumo:
The deep centers of high electron mobility transistor (HEMT) and pseudomorphic-HEMT (P-HEMT) functional materials of ultra-high-speed microstructures grown by MBE are investigated using deep level transient spectroscopy (DLTS) technique. DLTS spectra demonstrate that midgap states, having larger concentrations and capture cross sections, are measured in n-AlGaAs layers of HEMT and P-HEMT structures. These states may correlate strongly with oxygen content of n-AlGaAs layer. At the same time, one can observe that the movement of DX center is related to silicon impurity that is induced by the strain in AlGaAs layer of the mismatched AlGaAs/InGaAs/GaAs system of P-HEMT structure. The experimental results also show that DLTS technique may be a tool of optimization design of the practical devices.
Resumo:
Gallium nitride (GaN)-based Schottky junctions were fabricated by RF-plasma-assisted molecular beam epitaxy (MBE). The GaN epitaxial layers were deposited on novel double buffer layers that consist of a conventional low-temperature buffer layer (LTBL) grown at 500 degreesC and an intermediate-temperature buffer layer (ITBL) deposited at 690 degreesC. Low-frequency excess noise and deep level transient Fourier spectroscopy (DLTFS) were measured from the devices. The results demonstrate a significant reduction in the density of deep levels in the devices fabricated with the GaN films grown with an ITBL. Compared to the control sample, which was grown with just a conventional LTBL, a three-order-of-magnitude reduction in the deep levels 0.4 eV below the conduction band minimum (Ec) is observed in the bulk of the thin films using DLTFS measurements.
Resumo:
The simple reflection technique is usually used to measure the linear electro-optic (EO) coefficient (Pockels coefficient) in the development of EO polymer thin films. But there are some problems in some articles in the determination of the phase shift between the s and p light modes of a laser beam waveguided into the polymer film while a modulating voltage is applied across the electrodes, and different expressions for the linear EO coefficient measured have been given in these articles. In our research, more accurate expression of the linear EO coefficient was deduced by suitable considering the phase shift between the s and p light modes. The linear EO coefficients of several polymer thin films were measured by reflection technique, and the results of the Linear EO coefficient calculated by different expressions were compared. The limit of the simple reflection technique for measuring the linear EO coefficient of the polymer thin films was discussed.
Resumo:
A deep level transient spectroscopy technique has been used to determine the emission activation energies and capture barriers for electrons and holes in InAs self-assembled quantum dots embedded in GaAs. The ground electron and hole energies relative to their respective energy band edges of GaAs are 0.13 and 0.09 eV. Measurements show that the capture cross section of quantum dots is thermally activated. The capture barrier of quantum dots for electrons and holes are 0.30 and 0.26 eV, respectively. The results fit well with the results of photoluminescence spectroscopy measurements. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
We have measured photoluminescence of ZnSxTe1-x alloys (x > 0.7) at 300 K and under hydrostatic pressure up to 7 GPa. The spectra contain only a broad emission band under excitation of the 406.7 nm line. Its pressure coefficients are 47, 62 and 45 meV/GPa for x = 0.98, 0.92 and 0.79 samples, which are about 26%, 7% and 38% smaller than that of the band gap in the corresponding alloys. The Stokes shifts between emission and absorption of the bands were calculated by fitting the pressure dependence of the emission intensity, being 0.29, 0.48 and 0.13 eV for the three samples, respectively. The small pressure coefficient and large Stokes shift indicate that the emission band observed in our samples may correspond to the Te isoelectronic center in the ZnSxTe1-x alloy.
Resumo:
Experimental results have shown the fact that the deep-level centers in semi-insulating GaAs decrease with the improvement in stoichiometry. The electrical resistivity doubles when the concentration of EL2 centers decreases to a half. The microgravity-growth experiments also show that improved crystal stoichiometry results in a decrease of deep-level centers. (C) 1998 American Institute of Physics. [S0021-8979(98)04921-4].
Resumo:
The conduction-band offset Delta E-C has been determined for a molecular beam epitaxy grown GaAs/In0.2Ga0.8As single quantum-well structure, by measuring the capacitance-voltage (C - V) profiling, taking into account a correction for the interface charge density, and the capacitance transient resulting from thermal emission of carriers from the quantum well, respectively. We found that Delta E-C = 0.227 eV, corresponding to about 89% Delta E-g, from the C - V profiling; and Delta E-C = 0.229eV, corresponding to about 89.9% Delta E-g, from the deep-level transient spectroscopy (DLTS) technique. The results suggest that the conduction-band discontinuity Delta E-C obtained from the C-V profiling is in good agreement with that obtained from the DLTS technique. (C) 1998 American Institute of Physics.
Resumo:
Hall effect, photoluminescence (PL), infrared absorption, deep level transient spectroscopy (DLTS), and Raman scattering have been used to study property and defects of ZnO single crystal grown by a chemical vapor transport method (CVT). As-grown ZnO is N type with free electron density Of 10(16)-10(17)cm(-3). It has a slight increase after 900 degrees C annealing in oxygen ambient. The DLTS measurement revealed four deep level defects with energy at 0.30eV, 0.50eV, 0.68eV and 0.90eV in the as-grown ZnO sample, respectively. After the high temperature annealing, only the 0.5eV defect survive and has a concentration increase. PL results of the as-grown and annealed ZnO indicate that the well-known green emission disappear after the annealing. The result suggests a correlation between the 0.68eV defect and the green PL peak. Results of P-doped ZnO were also compared with the undoped ZnO sample. The nature of the defects and their influence on the material property have been discussed.
Resumo:
This paper describes the ground target detection, classification and sensor fusion problems in distributed fiber seismic sensor network. Compared with conventional piezoelectric seismic sensor used in UGS, fiber optic sensor has advantages of high sensitivity and resistance to electromagnetic disturbance. We have developed a fiber seismic sensor network for target detection and classification. However, ground target recognition based on seismic sensor is a very challenging problem because of the non-stationary characteristic of seismic signal and complicated real life application environment. To solve these difficulties, we study robust feature extraction and classification algorithms adapted to fiber sensor network. An united multi-feature (UMF) method is used. An adaptive threshold detection algorithm is proposed to minimize the false alarm rate. Three kinds of targets comprise personnel, wheeled vehicle and tracked vehicle are concerned in the system. The classification simulation result shows that the SVM classifier outperforms the GMM and BPNN. The sensor fusion method based on D-S evidence theory is discussed to fully utilize information of fiber sensor array and improve overall performance of the system. A field experiment is organized to test the performance of fiber sensor network and gather real signal of targets for classification testing.
Resumo:
Seismic sensors are widely used to detect moving target in ground sensor networks. Footstep detection is very important for security surveillance and other applications. Because of non-stationary characteristic of seismic signal and complex environment conditions, footstep detection is a very challenging problem. A novel wavelet denoising method based on singular value decomposition is used to solve these problems. The signal-to-noise ratio (SNR) of raw footstep signal is greatly improved using this strategy. The feature extraction method is also discussed after denosing procedure. Comparing, with kurtosis statistic feature, the wavelet energy feature is more promising for seismic footstep detection, especially in a long distance surveillance.
Resumo:
SOI (Silicon on Insulator) based photonic devices has attracted more and more attention in the recent years. Integration of SOI optical switch matrix with isolating grooves, total internal reflection (TIR) mirrors and spot size converter (SSC) was studied. A folding re-arrangeable non-blocking 4x4 optical switch matrix and a blocking 16x16 matrix with TIR mirrors and SSC were fabricated on SOI wafer. The performaces, including extinction ratio and the crosstalk, are better than before. The insertion loss and the polarization dependent loss (PDL) at 1.55 mu m increase slightly with longer device length, more bend and intersecting waveguides. The insertion losses decrease 2 similar to 3 dB when anti-reflection films are added in the ends of the devices. The rise and fall times of the devices are 2.1 mu s and 2.3 mu s, respectively.
Resumo:
An apparent defect suppression effect has been observed in InP through an investigation of deep level defects in different semi-insulating (SI) InP materials. Quality improvement of SI-InP based on the defect suppression mechanism is presented.
Resumo:
Undoped high resistivity (HR) GaN epilayers were grown on (0001) sapphire substrate by metalorganic chemical vapor deposition (MOCVD). Thermally stimulated current (TSC) and resistivity measurements have been carried out to investigate deep level traps. Deep levels with activation energies of 1.06eV and 0.85eV were measured in sample 1. Gaussian fitting of TSC spectra showed five deep levels in different samples. (c) 2006 WILEY VCH Vertag GmbH & Co. KGaA, Weinheim