915 resultados para Cyclic Staircase Voltammetry
Resumo:
Nowadays, we live in a time of rapid research for technological advances, in a way that this pursuit of new technologies is deeply connected to the diversity of new materials that have been developed by mankind. It deals with issues such as materials with enhanced properties which offer better quality, less cost and high performance, while they are accessible both in their production and moment of operation. In this context, it was required to develop electrodes that were easy to prepare as well as which present high electric conductivity and good mechanic proprieties by using carbonaceous material as basis. For this reason, the best parameters of the furfuryl resin cures were established with different pH variations through viscosimetric measurements and differential scanning calorimetry. By scanning electron microscopy (SEM) was possible to identify an increased porosity in the samples with pH 7 and pH 8, as compared to samples with lower pH content. After carbonization of the material, the characterization of monolithic glassy carbon was held by means of FT-IR techniques, Raman spectroscopy, X-ray diffraction and cyclic voltammetry. The spectra showed that the change in pH does not have significant influence on the crystallographic ordering of the material and its structural characteristics. As for the electrochemical character, the CVM electrodes showed excellent response, with good reversibility and wide potential window. Some voltammetric curve deviations were only observed for the sample with pH 4, which may be related to processing parameters adopted
Resumo:
V393 Scorpii is a double periodic variable characterized by a relatively stable non-orbital photometric cycle of 253 d. Mennickent et al. argue for the presence of a massive optically thick disc around the more massive B-type component and describe the evolutionary stage of the system. In this paper, we analyse the behaviour of the main spectroscopic optical lines during the long non-orbital photometric cycle. We study the radial velocity of the donor determining its orbital elements and find a small but significant orbital eccentricity (e = 0.04). The donor spectral features are modelled and removed from the spectrum at every observing epoch using the light-curve model given by Mennickent et al. We find that the line emission is larger during eclipses and mostly comes from a bipolar wind. We also find that the long cycle is explained in terms of a modulation of the wind strength; the wind has a larger line and continuum emissivity at the high state. We report the discovery of highly variable chromospheric emission in the donor, as revealed by the Doppler maps of the emission lines Mg II 4481 and C I 6588. We discuss notable and some novel spectroscopic features like discrete absorption components, especially visible at blue depressed O I 7773 absorption wings during the second half-cycle, Balmer double emission with V/R curves showing 'Z-type' and 'S-type' excursions around secondary and main eclipses, respectively, and H beta emission wings extending up to +/- 2000 km s(-1). We also discuss possible causes for these phenomena and for their modulations with the long cycle.
Resumo:
Improving the charge capacity, electrochemical reversibility and stability of anode materials are main challenges for the development of Ni-based rechargeable batteries and devices. The combination of cobalt, as additive, and electrode material nanostructuration revealed a very promising approach for this purpose. The new alpha-NiCo mixed hydroxide based electrodes exhibited high specific charge/discharge capacity (355-714 C g(-1)) and outstanding structural stability, withstanding up to 700 redox cycles without any significant phase transformation, as confirmed by cyclic voltammetry, electrochemical quartz crystal microbalance and X-ray diffractometry. In short, the nanostructured alpha-NiCo mixed hydroxide materials possess superior electrochemical properties and stability, being strong candidates for application in high performance batteries and devices. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this study we address the problem of the response of a (electro)chemical oscillator towards chemical perturbations of different magnitudes. The chemical perturbation was achieved by addition of distinct amounts of trifluoromethanesulfonate (TFMSA), a rather stable and non-specifically adsorbing anion, and the system under investigation was the methanol electro-oxidation reaction under both stationary and oscillatory regimes. Increasing the anion concentration resulted in a decrease in the reaction rates of methanol oxidation and a general decrease in the parameter window where oscillations occurred. Furthermore, the addition of TFMSA was found to decrease the induction period and the total duration of oscillations. The mechanism underlying these observations was derived mathematically and revealed that inhibition in the methanol oxidation through blockage of active sites was found to further accelerate the intrinsic non-stationarity of the unperturbed system. Altogether, the presented results are among the few concerning the experimental assessment of the sensitiveness of an oscillator towards chemical perturbations. The universal nature of the complex chemical oscillator investigated here might be used for reference when studying the dynamics of other less accessible perturbed networks of (bio)chemical reactions.
Resumo:
Gomesin (Gm) was the first antimicrobial peptide (AMP) isolated from the hemocytes of a spider, the Brazilian mygalomorph Acanthoscurria gomesiana. We have been studying the properties of this interesting AMP, which also displays anticancer, antimalarial, anticryptococcal and anti-Leishmania activities. In the present study, the total syntheses of backbone-cyclized analogues of Gm (two disulfide bonds), [Cys(Acm)2,15]-Gm (one disulfide bond) and [Thr2,6,11,15,d-Pro9]-Gm (no disulfide bonds) were accomplished, and the impact of cyclization on their properties was examined. The consequence of simultaneous deletion of pGlu1 and Arg16-Glu-Arg18-NH2 on Gm antimicrobial activity and structure was also analyzed. The results obtained showed that the synthetic route that includes peptide backbone cyclization on resin was advantageous and that a combination of 20% DMSO/NMP, EDC/HOBt, 60?degrees C and conventional heating appears to be particularly suitable for backbone cyclization of bioactive peptides. The biological properties of the Gm analogues clearly revealed that the N-terminal amino acid pGlu1 and the amidated C-terminal tripeptide Arg16-Glu-Arg18-NH2 play a major role in the interaction of Gm with the target membranes. Moreover, backbone cyclization practically did not affect the stability of the peptides in human serum; it also did not affect or enhanced hemolytic activity, but induced selectivity and, in some cases, discrete enhancements of antimicrobial activity and salt tolerance. Because of its high therapeutic index, easy synthesis and lower cost, the [Thr2,6,11,15,d-Pro9]-Gm analogue remains the best active Gm-derived AMP developed so far; nevertheless, its elevated instability in human serum may limit its therapeutic potential. Copyright (c) 2012 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
In this paper we report original measurements of total cross sections (TCSs) for positron scattering from the cyclic ethers oxirane (C2H4O), 1,4-dioxane (C4H8O2), and tetrahydropyran (C5H10O). The present experiments focus on the low energy range from similar to 0.2 to 50 eV, with an energy resolution smaller than 300 meV. This study concludes our systematic investigation into TCSs for a class of organic compounds that can be thought of as sub-units or moieties to the nucleotides in living matter, and which as a consequence have become topical for scientists seeking to simulate particle tracks in matter. Note that as TCSs specify the mean free path between collisions in such simulations, they have enjoyed something of a recent renaissance in interest because of that application. For oxirane, we also report original Schwinger multichannel elastic integral cross section (ICS) calculations at the static and static plus polarisation levels, and with and without Born-closure that attempts to account for the permanent dipole moment of C2H4O. Those elastic ICSs are computed for the energy range 0.5-10 eV. To the best of our knowledge, there are no other experimental results or theoretical calculations against which we can compare the present positron TCSs. However, electron TCSs for oxirane (also known as ethylene oxide) and tetrahydropyran do currently exist in the literature and a comparison to them for each species will be presented. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3696378]
Resumo:
Crotalphine, a 14 amino acid peptide first isolated from the venom of the South American rattlesnake Crotalus durissus terrificus, induces a peripheral long-lasting and opioid receptor-mediated antinociceptive effect in a rat model of neuropathic pain induced by chronic constriction of the sciatic nerve. In the present study, we further characterized the molecular mechanisms involved in this effect, determining the type of opioid receptor responsible for this effect and the involvement of the nitric oxide-cyclic GMP pathway and of K+ channels. Crotalphine (0.2 or 5 mu g/kg, orally; 0.0006 mu g/paw), administered on day 14 after nerve constriction, inhibited mechanical hyperalgesia and low-threshold mechanical allodynia. The effect of the peptide was antagonized by intraplantar administration of naltrindole, an antagonist of delta-opioid receptors, and partially reversed by norbinaltorphimine, an antagonist of kappa-opioid receptors. The effect of crotalphine was also blocked by 7-nitroindazole, an inhibitor of the neuronal nitric oxide synthase; by 1H-(1,2,4) oxadiazolo[4,3-a]quinoxaline-1-one, an inhibitor of guanylate cyclase activation; and by glibenclamide, an ATP-sensitive K+ channel blocker. The results suggest that peripheral delta-opioid and kappa-opioid receptors, the nitric oxide-cyclic GMP pathway, and ATP-sensitive K+ channels are involved in the antinociceptive effect of crotalphine. The present data point to the therapeutic potential of this peptide for the treatment of chronic neuropathic pain. Behavioural Pharmacology 23:14-24 (C) 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.
Resumo:
A novel amperometric sensor based on the incorporation of ruthenium oxide hexacyanoferrate (RuOHCF) into multiwalled carbon nanotubes (MWCNTs) immobilized on a glassy carbon electrode is described. Cyclic voltammetry experiments indicated that the cathodic reduction of hydrogen peroxide at the RuOHCF/MWCNTs100/GC modified electrode is facilitated, occurring at 0.0 V vs. Ag/AgCl/KCl(sat). Following the optimization of the experimental conditions, the proposed sensor presented excellent analytical properties for hydrogen peroxide determination, with a low limit of detection (4.7 mu mol L-1), a large dynamic concentration range (0.1-10 mmol L-1) and a sensitivity of 1280 mu A mmol(-1) L cm(-2). The usefulness of the RuOHCF/MWCNTs100/GC electrochemical sensor was confirmed by monitoring the consumption of hydrogen peroxide during the degradation of phenol by the Fenton reaction. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The nitrosyl ruthenium complex, trans-[RuCl([15]aneN(4))NO](PF6)(2), ([15]aneN(4) = 1,4,8,12-tetraazacyclopentadecane), exhibits vasorelaxation characteristics attributed to its nitric oxide release properties. The observed in vitro and in vivo vasodilation is dependent on noradrenaline concentration. We report here the chemical mechanism of the reaction between noradrenaline and trans-[RuCl([15]aneN(4))NO](PF6)(2) in aqueous phosphate buffer solution at pH 7.40. NO measurement by NO-sensor electrode, cyclic voltammetry, (PNMR)-P-31 and HPLC analysis were used to investigate the reduction process as the fundamental step for NO release characteristic of trans-[RuCl([15]aneN(4))NO](PF6)(2). A supramolecular species containing HPO4 (2-) as a bridging group between noradrenaline and trans-[RuCl([15]aneN(4))NO](PF6)(2) is suggested as an intermediate prior to the reduction of the nitrosyl ruthenium complex.
Resumo:
One of the key objectives in fuel cell technology is to reduce Pt loading by the improvement of its catalytic activity towards alcohol oxidation. Here, a sol-gel based method was used to prepare ternary and quaternary carbon supported nanoparticles by combining Pt-Ru with Mo, Ta, Pb, Rh or Ir, which were used as electro-catalysts for the methanol and ethanol oxidation reactions in acid medium. Structural characterization performed by XRD measurements revealed that crystalline structures with crystallites ranging from 2.8 to 4.1 nm in size and with different alloy degrees were produced. Tantalum and lead deposited as a heterogeneous mixture of oxides with different valences resulting in materials with complex structures. The catalysts activities were evaluated by cyclic voltammetry and by Tafel plots and the results showed that the activity towards methanol oxidation was highly dependent of the alloy degree, while for ethanol the presence of a metal capable to promote the break of C-C bond, such as Rh, was necessary for a good performance. Additionally, the catalysts containing of TaOx or PbOx resulted in the best materials due to different effects: the hi-functional mechanism promoted by TaOx and a better dispersion of the catalysts constituents promoted by PbOx. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Kaurenoic acid [ent-kaur-16-en-19-oic acid (1)] is a diterpene present in several plants including Sphagneticola trilobata. The only documented evidence for its antinociceptive effect is that it inhibits the writhing response induced by acetic acid in mice. Therefore, the analgesic effect of 1 in different models of pain and its mechanisms in mice were investigated further. Intraperitoneal and oral treatment with 1 dose-dependently inhibited inflammatory nociception induced by acetic acid. Oral treatment with 1 also inhibited overt nociception-like behavior induced by phenyl-p-benzoquinone, complete Freund's adjuvant (CFA), and both phases of the formalin test. Compound 1 also inhibited acute carrageenin- and PGE(2)-induced and chronic CFA-induced inflammatory mechanical hyperalgesia. Mechanistically, 1 inhibited the production of the hyperalgesic cytokines TNF-alpha and IL-1 beta. Furthermore, the analgesic effect of 1 was inhibited by L-NAME, ODQ, KT5823, and glybenclamide treatment, demonstrating that such activity also depends on activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway, respectively. These results demonstrate that 1 exhibits an analgesic effect in a consistent manner and that its mechanisms involve the inhibition of cytokine production and activation of the NO-cyclic GMP-protein lcinase G-ATP-sensitive potassium channel signaling pathway.
Resumo:
Urease (Urs) was immobilized in electrochemically prepared polypyrrole (PPy) and the resulting films were characterized by cyclic voltammetry, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and ultraviolet visible spectroscopy (UV-VIS). The enzymatic activity of Urs entrapped in the PPy matrix was confirmed by the catalytic conversion of urea into carbon dioxide and ammonia, when urea was detected amperometrically at different concentrations in standard samples and commercial fertilizers. The PPy/Urs biosensors exhibited selectivity, a relatively high efficiency at urea concentrations below 3.0 mmol L-1, and a sensitivity to urea of 2.41 mu A cm(-2) mmol(-1) L (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Inclusion compounds of Al-quercetin and Al-catechin complexes with beta-cyclodextrin (beta CD) were investigated. The complex and the inclusion compound of quercetin are more effective DPPHaEuro cent scavengers than the corresponding catechin compounds and the inclusion does not compromise their scavenging abilities, with only a slight decrease in the EC50 values. This is in accordance with the electrochemical data, which revealed that the inclusion compounds have lower diffusion coefficients in aqueous solution than the non-included compounds. For the quercetin compounds, some spectroscopic properties were also addressed by means of UV-visible and NMR measurements in aqueous media.
Resumo:
The chemiluminescence of cyclic peroxides activated by oxidizable fluorescent dyes is an example of chemically initiated electron exchange luminescence (CIEEL), which has been used also to explain the efficient bioluminescence of fireflies. Diphenoyl peroxide and dimethyl-1,2-dioxetanone were used as model compounds for the development of this CIEEL mechanism. However, the chemiexcitation efficiency of diphenoyl peroxide was found to be much lower than originally described. In this work, we redetermine the chemiexcitation quantum efficiency of dimethyl-1,2-dioxetanone, a more adequate model for firefly bioluminescence, and found a singlet quantum yield (Phi(s)) of 0.1%, a value at least 2 orders of magnitude lower than previously reported. Furthermore, we synthesized two other 1,2-dioxetanone derivatives and confirm the low chemiexcitation efficiency (Phi(s) < 0.1%) of the intermolecular CIEEL-activated decomposition of this class of cyclic. peroxides. These results are compared with other chemiluminescent reactions, supporting the general trend that intermolecular CIEEL systems are much less efficient in generating singlet excited states than analogous intramolecular processes (Phi(s) approximate to 50%), with the notable exception of the peroxyoxalate reaction (Phi(s) approximate to 60%).
Resumo:
Lupulones, hops beta-acids, are one of the main constituents of the hops resin and have an important contribution to the overall bacteriostatic activity of hops during beer brewing. The use of lupulones as natural alternatives to antibiotics is increasing in the food industry and also in bioethanol production. However, lupulones are easy oxidizable and have been shown to be very reactive toward 1-hydroxyethyl radical with apparent bimolecular rate constants close to diffusion control k = 2.9 x 10(8) and 2.6 x 10(8) L mol(-1) s(-1) at 25.0 +/- 0.2 degrees C in ethanol water solution (10% of ethanol (v/v)) as probed by EPR and ESI-IT-MS/MS spin-trapping competitive kinetics, respectively. The free energy change for an electron-transfer mechanism is Delta G degrees = 106 kJ/mol as calculated from the oxidation peak potential experimentally determined for lupulones (1.1 V vs NHE) by cyclic voltammetry and the reported reduction potential for 1-hydroxyethyl radical. The major reaction products identified by LC-ESI-IT-MS/MS and ultrahigh-resolution accurate mass spectrometry (orbitrap FT-MS) are hydroxylated lupulone derivatives and 1-hydroxyethyl radical adducts. The lack of pH dependence for the reaction rate constant, the calculated free energy change for electron transfer, and the main reaction products strongly suggest the prenyl side chains at the hops beta-acids as the reaction centers rather than the beta,beta'-triketone moiety.