943 resultados para Colloidal Crystallization
Resumo:
The aim of the present study was to prepare solid Quil A-cholesterol-phospholid formulations (as powder mixtures or compressed to pellets) by physical mixing or by freeze-drying of aqueous dispersions of these components in ratios that allow spontaneous formation of ISCOMs and other colloidal stuctures upon hydration. The effect of addition of excess cholesterol to the lipid mixtures on the release of a model antigen (PE-FITC-OVA) from the pellets was also investigated. Physical properties were evaluated by X-ray powder diffractometry (XPRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and polarized light microscopy (PLM). Characterization of aqueous colloidal dispersions was performed by negative staining transmission electron microscopy (TEM). Physically mixed powders (with or without PE-FITC-OVA) and pellets prepared from the same powders did not spontaneously form ISCOM matrices and related colloidal structures such as worm-like micelles, ring-like micelles, lipidic/layered structures and lamellae (hexagonal array of ring-like micelles) upon hydration as expected from the pseudo-temary diagram for aqueous mixtures of Quil A, cholesterol and phospholipid. In contrast, spontaneous formation of the expected colloids was demonstrated for the freeze-dried lipid mixtures. Pellets prepared by compression of freeze-dried powders released PE-FITC-OVA slower than those prepared from physically mixed powders. TEM investigations revealed that the antigen was released in the form of colloidal particles (ISCOMs) from pellets prepared by compression of freeze-dried powders. The addition of excess cholesterol slowed down the release of antigen. The findings obtained in this study are important for the formulation of solid Quil A-containing lipid articles as controlled particulate adjuvant containing antigen delivery systems. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Monodisperse 1-2 nm silicon nanocrystals are synthesized in reverse micelles and have their surfaces capped with either allylamine or 1-heptene to produce either hydrophilic or hydrophobic silicon nanocrystals. Optical characterization (absorption, PL, and time-resolved PL) is performed on colloidal solutions with the two types of surface-capped silicon nanocrystals with identical size distributions. Direct evidence is obtained for the modification of the optical properties of silicon nanocrystals by the surface-capping molecule. The two different surface-capped silicon nanocrystals show remarkably different optical properties.
Resumo:
Textilinin-1 (Txln-1), a Kunitz-type serine protease inhibitor, is a 59-amino-acid polypeptide isolated from the venom of the Australian Common Brown snake Pseudonaja textilis textilis. This molecule has been suggested as an alternative to aprotinin, also a Kunitz-type serine protease inhibitor, for use as an anti-bleeding agent in surgical procedures. Txln-1 shares only 47% amino-acid identity to aprotinin; however, six cysteine residues in the two peptides are in conserved locations. It is therefore expected that the overall fold of these molecules is similar but that they have contrasting surface features. Here, the crystallization of recombinant textilinin-1 (rTxln-1) as the free molecule and in complex with bovine trypsin (229 amino acids) is reported. Two organic solvents, phenol and 1,4-butanediol, were used as additives to facilitate the crystallization of free rTxln-1. Crystals of the rTxln-1-bovine trypsin complex diffracted to 2.0 angstrom resolution, while crystals of free rTxln-1 diffracted to 1.63 angstrom resolution.
Resumo:
The mammalian long-chain acyl-CoA thioesterase, the enzyme that catalyses the hydrolysis of acyl-CoAs to free fatty acids, contains two fused 4HBT (4-hydroxybenzoyl-CoA thioesterase) motifs. The C-terminal domain of the mouse long-chain acyl-CoA thioesterase (Acot7) has been expressed in bacteria and crystallized. The crystals were obtained by vapour diffusion using PEG 2000 MME as precipitant at pH 7.0 and 290 K. The crystals have the symmetry of space group R32 ( unit-cell parameters a = b = 136.83, c = 99.82 angstrom, gamma = 120 degrees). Two molecules are expected in the asymmetric unit. The crystals diffract to 2.4 angstrom resolution using the laboratory X-ray source and are suitable for crystal structure determination.
Resumo:
This article reports thermoset blends of bisphenol A-type epoxy resin (ER) and two amphiphilic four-arm star-shaped diblock copolymers based on hydrophilic poly(ethylene oxide) (PEO) and hydrophobic poly(propylene oxide) (PPO). 4,4'-Methylenedianiline (MDA) was used as a curing agent. The first star-shaped diblock copolymer with 70 wt% ethylene oxide (EO), denoted as (PPO-PEO)(4), consists of four PPO-PEO diblock arms with PPO blocks attached on an ethylenediamine core; the second one with 40 wt% EO, denoted as (PEO-PPO)(4), contains four PEO-PPO diblock arms with PEO blocks attached on an ethylenediamine core. The phase behavior, crystallization, and nanoscale structures were investigated by differential scanning calorimetry, transmission electron microscopy, and small-angle X-ray scattering. It was found that the MDA-cured ER/(PPO-PEO)(4) blends are not macroscopically phase-separated over the entire blend composition range. There exist, however, two microphases in the ER/(PPO-PEO)(4) blends. The PPO blocks form a separated microphase, whereas the ER and the PEO blocks, which are miscible, form another microphase. The ER/(PPO-PEO)(4) blends show composition-dependent nanostructures on the order of 10-30 nm. The 80/20 ER/(PPO-PEO)(4) blend displays spherical PPO micelles uniformly dispersed in a continuous ER-rich matrix. The 60/40 ER/(PPO-PEO)(4) blend displays a combined morphology of worm-like micelles and spherical micelles with characteristic of a bicontinuous microphase structure. Macroscopic phase separation took place in the MDA-cured ER/(PEO-PPO)(4) blends. The MDA-cured ER/(PEO-PPO)(4) blends with (PEO-PPO)(4) content up to 50 wt% exhibit phase-separated structures on the order of 0.5-1 mu m. This can be considered to be due to the different EO content and block sequence of the (PEO-PPO)(4) copolymer. (c) 2006 Wiley Periodicals, Inc.
Resumo:
The ability to control the surface properties and subsequent colloidal stability of dispersed particles has widespread applicability in many fields. Sub-micrometer fluorescent silica particles (reporters) can be used to actively encode the combinatorial synthesis of peptide libraries through interparticle association. To achieve these associations, the surface chemistry of the small fluorescent silica reporters is tailored to encourage robust adhesion to large silica microparticles onto which the peptides are synthesized. The interparticle association must withstand a harsh solvent environment multiple synthetic and washing procedures, and biological screening buffers. The encoded support beads were exposed to different solvents used for peptide synthesis, and different solutions used for biological screening including phosphate buffered saline (PBS), 2-[N-morpholino]ethane sulfonic acid (VIES) and a mixture of MES and N-(3-dimethyl-aminopropyl)-N'-ethylcarbodiimide (EDC). The number of reporters remaining adhered to the support bead was quantified after each step. The nature of the associations were explored and tested to optimize the efficiency of these phenomena. Results presented illustrate the influence of the surface functionality and polyelectrolyte modification of the reporters. These parameters were investigated through zeta potential and X-ray photoelectron spectroscopy.