965 resultados para Caceres (MT)
Microorganisms linked to Neoproterozoic microspar carbonate sedimentation in the Jilin-Liaoning area
Resumo:
Molar-tooth carbonate refers to a sort of rock that has ptygmatical folded structure comparable to the ivory. This kind of carbonate exists in a special time range (from Middle to Neoproterozoic). Its origin and the possibility to use it in stratigraphic correlation of the paleocontinent is the key task of the IGCP447, a project on Proterozoic molar tooth carbonates and the evolution of the earth (2001-2005). The importance lies in that the molar-tooth structure is the key to solving problems related to Precambrian biological and global geochemical events. The molar-tooth structure is associated with microorganisms. Development and recession of such carbonates have relations with the evolution process of early lives and abrupt changes in sea carbonate geochemistry. In recent years, based on researches on petrology, geochemistry and Sr isotope of molar-tooth carbonate in the Jilin-Liaoning and Xuzhou-Huaiyang area, the authors hold that it can be used as a marker for stratigraphic sequence and sedimentary facies analyses.
Resumo:
沙蚕作为海陆交错带的关键性物种,常被作为环境污染的指示生物。沙蚕生态毒理学已成为生态毒理学研究中又一大有发展前途的研究方向,而有关其耐受高污染胁迫机理的研究则会促进其在生物修复等应用技术领域的发展。针对目前国内外对耐受性机理研究较少的这一现状,并根据我国近岸海域污染的客观事实,本研究确立了以重金属Cu/Cd和有机物石油烃为主要污染物的沙蚕耐污染毒理效应研究,从分子生态毒理学角度对其耐受机制进行探讨。 本研究所采用的三种单一污染物对沙蚕均具有潜在的生理毒性,根据半致死剂量的高低确定毒性强弱顺序依次为:石油烃>Cu>Cd。乙酰胆碱酯酶对石油烃毒性效应的灵敏性明显强于重金属,可溶性蛋白对三种污染物毒害响应的敏感性则较差。两种不同类型的重金属均可以诱导MT的合成,污染物与解毒系统之间存在时间-效应和剂量-效应关系,但当达到一定浓度时MT基本达到饱和,并维持某一稳定水平。沙蚕对重金属和石油烃均表现出显著的生物富集现象。 重金属Cu/Cd和石油烃的联合作用对沙蚕的毒性效应与污染物浓度组合有关,在高浓度石油烃组合中,两种污染物表现出拮抗作用,重金属对于石油烃所引起的神经毒性有钝化作用,而以可溶性蛋白含量作为单一指示则表现出一定的局限性。石油烃不能显著诱导沙蚕MT的合成,但与重金属Cu/Cd联合作用时能够显著影响MT含量。沙蚕对不同污染物的生物富集受两者浓度组合关系的影响。 根据以上结果推测沙蚕耐受重金属的机制可能与MT的解毒功能有关,因此通过分子生物学手段获得了沙蚕金属硫蛋白基因的部分cDNA序列,该序列长度为287bp,编码65个氨基酸,富含Cys达24.2%。但有关其全序列基因的研究还有待进一步深入。
Resumo:
Osteocytes respond to dynamic fluid shear loading by activating various biochemical pathways, mediating a dynamic process of bone formation and resorption. Whole-cell deformation and regional deformation of the cytoskeleton may be able to directly regulate this process. Attempts to image cellular deformation by conventional microscopy techniques have been hindered by low temporal or spatial resolution. In this study, we developed a quasi-three-dimensional microscopy technique that enabled us to simultaneously visualize an osteocyte's traditional bottom-view profile and a side-view profile at high temporal resolution. Quantitative analysis of the plasma membrane and either the intracellular actin or microtubule (MT) cytoskeletal networks provided characterization of their deformations over time. Although no volumetric dilatation of the whole cell was observed under flow, both the actin and MT networks experienced primarily tensile strains in all measured strain components. Regional heterogeneity in the strain field of normal strains was observed in the actin networks, especially in the leading edge to flow, but not in the MT networks. In contrast, side-view shear strains exhibited similar subcellular distribution patterns in both networks. Disruption of MT networks caused actin normal strains to decrease, whereas actin disruption had little effect on the MT network strains, highlighting the networks' mechanical interactions in osteocytes.
Resumo:
Fiber Bragg grating (FBG) sensor for monitoring the electromagnetic strain in a low temperature superconducting (LTS) magnet was studied. Before used to LTS magnet strain sensing, the strain response of the sensor with 1.54-mu m wavelength at liquid helium was experimentally studied. It was found that the wavelength shift showed good linearity with longitudinal applied loads and the strain sensitivity is constant at 4.2 K. And then, the hoop strain measurement of a LTS magnet was carried out on the basis of measured results. Furthermore, the finite element method (FEM) was used to simulate the magnet strain. The difference between the experimental and numerical analysis results is very small.
Resumo:
横断山地区是一个十分自然的植物区系地区,在中国植物区系分区中是作为泛北极植物区中国-喜马拉雅亚区中的一个地区,其种子植物区系具有丰富的科、属、种,地理成分复杂,特有现象和替代现象明显。该地区作为植物区系和生物多样性的研究热点地区,长期以来极受中外植物学家关注。横断山脉东缘是中国-喜马拉雅和中国-日本植物区系的交汇过渡区域,北部的岷江流域以及南部的金沙江流域,孕育了该区丰富的物种资源和植被资源。而岷江干热河谷和金沙江干热河谷的相似性和相关性,更为该区的植物区系和生物多样性南北的对比研究提供了有利的条件。 本研究选择的九顶山西坡和龙肘山分别位于横断山区北部和南部,九顶山属岷江流域而龙肘山属金沙江流域。本研究结合植物区系研究和生物多样性研究,对该区的植物资源进行调查。通过样带调查和样线踏查结合,大量详实的野外样方调查和标本采集,进行传统的区系研究和生物多样性研究。研究该区物种多样性的海拔梯度格局及其潜在的影响影子,并利用新的区系评估质量方法对九顶山西坡的植物区系质量进行定量的研究,以期能更为深刻的理解该区的植物资源,为该区的资源保护和利用提供合理可行的建议。主要研究结论如下: 1)九顶山西坡植物区系的性质和特点 经鉴定和统计,九顶山西坡共有1707 种维管植物,分属617 属和140 科,其中种子植物1616 种,分属572 属117 科。就科的分布区成分构成而言,该区系的热带成分与温带成分相当,热带成分略占优势,表明九顶山西坡的植物区系与热带植物区系有较强的联系。但是,在九顶山西坡属的分布区类型所占的比例上,温带成分远远超过了热带成分,本区的种子植物分布表现出明显的温带性质。且温带分布类型的许多物种组成了九顶山西坡植被的建群种和优势种,是本区系最重要的成分,充分体现了本区系的温带性质。 2)九顶山西坡不同植被带的生物多样性海拔梯度格局 基于对土门-断头崖、茶山-九顶山、雁门沟-光光山三条垂直植被样带的调查,我们发现九顶山西坡的生物多样性沿海拔梯度的变化呈现出一定的规律性,不同样带之间有一定差异。就三条样带的物种组成相似性来看,虽然土门-断头崖样带属于涪江水系,而茶山-九顶山样带和雁门沟-光光山样带属于岷江水系,但不同水系对该区物种组成的影响并不明显。三条样带中,草本层物种丰富度均远远大于灌木层和乔木层,而以乔木层物种丰富度最低;α-多样性指数随着海拔梯度的变化在土门-断头崖样带中呈现单一下降趋势,在茶山-九顶山样带表现为双峰模型,而在雁门沟-光光山样带则表现为不显著波动变化;均匀度指数在土门-断头崖样带呈现出单一下降的趋势,在雁门沟-光光山样带表现为凹形曲线,而在茶山-九顶山样带却无明显的变化规律。β-多样性指数在土门-断头崖样带和茶山-九顶山样带呈现出明显的波动状态,植被类型替代现象明显;而在雁门沟-光光山样带却并未有十分显著的转折点,因其水平植被带受到干扰,同海拔替代现象不显著。 3)九顶山西坡维管植物丰富度的海拔梯度格局 我们考察了九顶山西坡和两条垂直样带(土门-断头崖和雁门沟-光光山样带)的不同分类等级(包括科、属、种)和不同生活型物种(乔木、灌木、禾草、蕨类和其它草本)的丰富度沿着海拔梯度的分布。结果发现,物种的丰富度海拔梯度格局具有不同的模式,单一下降和中间膨胀格局依然是其主流。不同生活型的物种具有不同的丰富度格局,但是对于环境需求相似的类型具有较相似的丰富度格局。不同的丰富度格局可能由多因素导致,包括:气候,海拔跨度,面积,人为干扰等等。 4)九顶山西坡区系质量评估 我们尝试使用传统的区系质量评估方法对九顶山西坡的区系质量进行评估,并尝试使用一种新的区系质量评估体系对该区的区系进行评价。在九顶山西坡随着海拔梯度的上升,平均保守性系数在各条植被带中均呈现出逐渐上升的趋势。区系质量指数随着海拔的升高都表现为双峰模型,在植被交错区区系质量指数相对较高,而在海拔的两极,区系质量指数都很低。大部分地区使用新方法计算所得的加权平均保守性系数和区系质量指数都比传统方法计算的平均保收性系数和区系质量指数要高,说明在九顶山西坡的三条样带中,大部分地区都是那些保守性系数较高的物种占据优势,同时也表明九顶山西坡具有很高质量的区系和自然植被。 5)龙肘山种子植物区系的性质和特点 龙肘山种子植物区系的物种较为丰富,共有154 科,544 属,1156 种。科的优势十分明显,单种属和寡种属数量众多,说明本区系植物成分较为复杂、起源古老、物种多样性指数较高。地理成分复杂,分布类型多样,其中热带成分在总数量上高于温带成分,但是许多温带成分的属是该区植被的重要建群类群和优势类群,表现出明显的亚热带性质。 6)龙肘山生物多样性的现状和特点 在海拔梯度上,龙肘山地区无论是科、属、种的数量,还是不同等级分类单元之间的数量比,均呈现先升后降的趋势,并在中海拔地区达到峰值。物种多样性指数从总体上来说变化幅度不大,略有先升后降的趋势,在中海拔梯度物种多样性最高。乔、灌、草三层的多样性指数表现出乔木层<灌木层<草本层的特征;乔木层均匀度的变化很大,而灌木层和草本层均匀度的变化较小;灌木层均匀度的波动又强于草本层。β-多样性指数呈现单峰模式,中海拔地区最高。就龙肘山东、西坡物种多样性相比较而言,两者虽然在数值上交替上升,但是却体现出了较为一致的趋势,但西坡因受到干热河谷气候的影响,其平均气温要高于东坡,导致了东坡植物群落和物种的分布比西坡要低。在区系成分构成上,低山区的相同海拔段,西坡的热带亚热带成分所占的比例要比东坡高,这是因为西坡的平均气温比东坡稍高,导致了热带、亚热带物种分布更多。而随着海拔的上升,东、西两坡的气候、土壤等条件趋于一致,其植物区系成分的构成格局也趋于一致。 The Hengduan Mountain region is a very natural floristic region; it belongs toChina-Himalaya sub-region of Holarctic region in floristic subarea of China. The flora in this areais rich in family, genus and species; has a very complex composition of geographical elements;especially with high richness of endemic species and obvious substitution phenomenon. Thisregion as a hot-spot area of floristic and biodiversity, has fascinated biologists in the world for along time. The eastern range of Hengduan Mountain is the transition zone of China – Himalayaforest sub-region and China-Japan forest sub-region in floristic. The water systems are quitedifferent, Minjiang River in the north and Jishajiang River in the south grow quit different but alsoabundant plant species and vegetation resources. The similarity and correlativity of Minjiang River dry valleys and Jinshajiang River dry valleys have provided advantageous condition tocontrast flora and biodiversity between north and south. In the present study, the Jiuding Mountainlies in the north of Hengduan Mountain and belongs to Minjiang River, and the LongzhouMountain lies in the south of Hengduan Mountain and belongs to Jinshajiang River. In our study, we combined the methods of floristic research and biodiversity investigation toexplore the resources of plant species and vegetations; sampled with transects along the altitudinalgradients and also with transverse straps with similar elevation; collected the vascular plant specimen with sampling plots of ecology. We explored the plant species richness patterns alongaltitudinal gradients and discussed the underlying factors aroused these patterns; and used a novelmethod to assess the quality of Jiuding Mountain’s flora. All for a deeper comprehension of the plant recourses of this region; and provided feasible and reasonable suggestion for the protectionof resources. The results were as follows: 1 The characteristic of the flora of the west slope of Jiuding Mountain We had collected 1707 species of vascular plants belonging to 617 genera in 140 families inthe west slope of Jiuding Mountain,in which included 1616 seed plant species belonging to 572genera and 117 families. As for the composition of the areal types of the Families of seed plants,tropic components and temperate components are well-balanced, and percentage of tropicscomponents is higher than that of temperate ones for a litter bit. This shows the flora in the westslope of Jiuding Mountain has strong relationship with the tropic flora. But for the composition ofthe areal types of genera, temperate components have far exceeded the tropics ones, indicated thewhole flora with a conspicuous temperate character. Temperate components possess maximumproportion in the west slope of Jiuding Mountain, and many of them belong to constructivespecies and dominant species in the vegetation, are most important components in JiudingMountain’s Flora, also have embodied the temperate character of this area sufficiently. 2 Biodiversity patterns along altitudinal gradients in different vegetation transects in the westslope of Jiuding Mountain Based on the investigation of three vegetation transects (including Tumen-Duantouya transect,Chashan-Jiudingshan transect and Yanmengou-Guangguangshan Transect) in the west slope ofJiuding Mountain, we found the change of biodiversity along the altitude gradients displayedcertain regularity, but have differences among different transects. The three transects belong todifferent water systems; the Tumen-Duantouya transect belongs to Fujiang River, and the othertwo belong to Minjiang River. From the similarity of species compositions of different transects,we found different water system didn’t show obvious impact on the species composition. In all thethree transects, the species richness of herb layer was remarkably higher than shrub and tree layer,and the species richness of tree layer was the lowest one. With the increasing of the altitude, theline of α-diversity was monotonically decreasing curve in Tumen-Duantouya transect, andbimodal curve in Chashan-Jiudingshan transect, but in Yanmengou-Guangguangshan transectshowed a wave-like curve although not very obvious. Species evenness showed monotonicallydecreasing trends in Tumen-Duantouya transect, and very low at mid-altitude in Yanmengou-Guangguangshan transect, but in Chashan-Jiudingshan transect changed irregularly. Changes inβ-diversity corresponded with the transition of vegetation in the Tumen-Duantouya transect andChashan-Jiudingshan transect, and the curve of β-diversity along altitude had obvious turningpoint; but in Yanmengou-Guangguangshan transect had no obvious turning point, and thesubstitution phenomenon was not obvious, transverse vegetation straps distributed interlaced. 3 Richness patterns of vascular plant species along altitude in the west slope of Jiuding Mountain Direct gradient analysis and regression methods were used to describe the species richnesspatterns along the altitudinal for Mt. Jiuding, as well as separately for Tumen-Duantouya Transectand Yanmengou-Guangguangshan Transect. Altitudinal gradient of diversity of units at differenttaxonomic level (including Family, Genus and Species) and at different life form (including tree,shrub, pteridophyte, grass and other herb) were tested to find differences among the richnesspattern. We found altitudinal richness also shows different patterns, and both monotonicallydecreasing pattern and hump-shaped pattern can be founded in vascular species richness. Speciesin different life forms show different altitudinal patterns, but those species with similarrequirements to environmental conditions show similar richness patterns along altitudinalgradients. Different richness patterns can be aroused by different climate, different altitudinal span,area factor, anthropogenic factor and so on. 4 Floristic quality assessments in the west slope of Jiuding Mountain We used both the conventional method broadly adopted in the USA and the new one toassess the floristic quality in the west slope of Jiuding Mountain. The Mean Coefficient ofConservatism (MC) had the trend of increment along the altitudinal gradients. The FloristicQuality Index (FQI) was a bimodal curve with increasing of elevation; FQI got maximum valuesin the transition zones of different vegetations in the middle altitude, and had very low values atthe two end of elevation. In most areas of the west slope of the Jiuding Mountain, the resultscalculated using the new methods were higher than those using the conventional method. Thisindicated the dominant species of the communities had very high coefficients of conservatism inmost areas of Jiuding Mountain, and the communities are relatively kept pristine and the habitats very integrative. 5 The characteristic of the flora of Longzhou Mountain The flora of Longzhou Mountain has very abundant in species composition; there are about1156 species of seed plants belonging to 544 genera in 154 families. In which, twelve families with more than 20 species include totally 232 genera and 532 species, and form the majority of itsflora. The origin of its flora is old, monospecific genera and oligotypic genera amounts to 510 innumber, which constitute 93.75% of total number of genera. The geographical components arevarious in Longzhou Mountain, the majority of flora are temperate and pantropic ones. The tropiccomponents overtopped temperate components on genera quantity, but many temperatecomponents belong to constructive species and dominant species in the vegetation, and the wholeflora shows an obvious subtropical character. 6 Current situation and characteristic of biodiversity in Longzhou Mountain With the increasing of altitude, the number of species, genus, family and the ratios ofdifferent taxonomic levels all displayed a trend of descending after rising first, and peaked atmiddle height area. The change of α-diversity was not very acutely, with the trend of descendingafter rising first in some degree, the middle height area had highest α-diversity. As studying thetree layer, shrub layer and herb layer respectively, the Shannon-Wiener index was in followingorder: tree layer < shrub layer < herb layer; the change of evenness was more complicatedly thanthat of diversity, the tree layer changed acutely, but the shrub layer and herb layer fluctuatedsmoothly. Changes in β-diversity also showed the trend of descending after rising first. TheJaccard index and Cody index all peaked at the middle height forest area. As for the comparison ofplant diversity and evenness between the west and east slope, the numerical values ascendedalternatively, but the trend of changing was similar. The distribution of similar plant communitiesand species in east slope were lower than the west slope for the influence of Jinsha River DryValley. As for the composition of different floristic components, in lower altitude area of westslope, the tropic and sub-tropic plants had higher ratio than east slope’s and even could be equal tothe temperate plants. With the increasing of elevation, the floristic composition become morelikely between the east and west slope and temperate plants dominated the flora.
Resumo:
揭示苔藓植株元素含量及其时空差异性是深入开展利用苔藓植物指示环境和筛选理想监测藓种的科学基础。采用微波消解(ICP-AES)方法对九寨沟自然遗产地原始林景点停车场周围三个采样带:I为停车场植被小岛(PS),向外约120 m半径为II带(D120),再向外距离约1,000 m为III带(D1000)和3个方向上的大羽藓和毛尖青藓2种苔藓中13种元素(A1, S, Ca, P, Cu, Fe, K, Mg, Mn, Pb, Ni,Zn和Cd)含量进行了测定和比较,并对采自边坡方向(PS-3)上2005和2007年的4种苔藓植物(南木藓、大羽藓、平藓和厚角絹藓)也进行了13种元素含量的测定和比较。同时对九寨沟自然遗产地、黄龙自然遗产地、夹金山和梦笔山的冷杉原始林4个地区的3种苔藓中(大羽藓、锦丝藓和塔藓)的A1、Ca、Cu、Fe、K、Mg、P、Zn、C和N 10种元素含量进行测定和比较。 对大羽藓和毛尖青藓2种苔藓植物内13种元素的测定发现:1)同种苔藓对不同元素的富集能力不同。A1、Ca、K、Mg和P的元素含量在苔藓中的富集较其他元素的要高。2)不同种苔藓植物对同种元素的富集能力不同,毛尖青藓较大羽藓能够监测出更多的元素;对于被检测出的元素,毛尖青藓监测出的累积量大于大羽藓,其中累积量最大的元素是Ca为10 874.286 μg.g-1.year-1,最小的是Cu元素为5.438 μg.g-1.year-1。对05年和07年的平藓、大羽藓、南木藓和厚角絹藓元素含量的测定表明:元素在两年中的积累量是不同的。综合分析表明,苔藓生物监测方法可有效监测景点停车场机动车尾气中排放出的典型元素(如Cu、Pb、Ni、Zn、Cd等)含量,而毛尖青藓较大羽藓能更可靠的监测九寨沟自然遗产地单景点汽车尾气金属元素种类及其排放量。 对4个地区3种苔藓10种元素监测发现:1)Ca、Mg、Zn、K和Cu元素在黄龙地区的含量高于在其它地区的含量;P元素在梦笔山地区的含量为最高;Fe和Al元素在夹金山地区的含量高于在其它地区的含量。2)C元素在其它因素一致的情况下,进行不同年龄间的元素含量比较,结果显示元素含量在各年龄间并不存在明显的差异性;N元素含量与年龄的差异出现在黄龙林下及林窗的塔藓、九寨沟林下的锦丝藓及塔藓和梦笔山的塔藓中,而在锦丝藓中未出现元素含量与年龄的差异性;塔藓能检测出更多的元素种类其含量与年龄间存在显著差异,锦丝藓检测到的元素种类次之;除锦丝藓(锦丝藓在林窗中几乎检测不到元素含量与年龄间的差异性)外,其他两种藓在林窗中能检测出的元素种类大于在林下的检测种类。3)元素含量与生境间存在差异性的元素分别有:黄龙大羽藓中的Ca、P和Mg元素;九寨锦丝藓中的Zn元素;夹金山塔藓中的Al、Fe和Zn元素;梦笔山大羽藓中的Al、Fe和Mg元素及锦丝藓中的Ca元素。4)区域、年龄和生境因素对苔藓植株元素含量均达到了显著水平,但两两之间及三者之间的交互作用由于元素种类的不同存在差异。综合分析表明,苔藓植物中的元素含量受年龄、区域的影响较生境的更大。 The revelation of mosses elements content and its spatiotemporal differences is the scientific foundation of moss monitoring. To determine the feasibility of moss monitoring metal depositions derived from travel bus emiss ions in scenic spot, we collected one year-growth samples of two mosses Brachythecim piligerum and Thuidium cymbifolium with different distance (island center, 120m,1000m ) and different direction (north, south and east) far from parking site island from Yuanshilin Spot at Jiuzhaigou World Nature Heritage in the Western Sichuan of China and determined thirteen element (A1, S, Ca, P, Cu, Fe, K, Mg, Mn, Pb, Ni, Zn, Cd)contents by ICP-AES analysis method. And picked 4 kinds of mosses (Macrothamnium macrocarpu m(Reinw. etHornsch.)Fleisch.,Thuidium cymbifolium,Entodon concinnus (De Not.) Par., Neckera pennata) from the direction PS-3 in 2005 and 2007, determined 13 element contents. Collected 3 kinds of moss (Thuidium cymbifo lium, Actinothuidium Hookeri (Mitt.) and Hyolcomium splendens (Hedw.) from Jiuzhaigou natural heritage, Huanglong natural heritage, Mt. Jiajin and Mt. Mengbi in primeval forest with two habitat (undergrowth and forest gap), determined element contents of A1, Ca, Cu, Fe, K, Mg, P, Zn, C and N. We found that, 1) The elements content are difference in same type of moss. Content of A1, Ca, K, Mg and P are higher than others. 2) While the contents of A1, S, Ca, P, Cu, Fe, K and Zn had significant correlation with the different distances from parking site, the nearer the distance was, the more accumulation was; 2) Comparing to Thuidium cymbifolium, Brachythecium piligerum can test more elements which contents show the significant correlation with distances. And Brachythecium piligerum can have greater element accumulation than Thuidium cymbifolium. The element contents in two years (2005 and 2007) are different. The present study found that moss can reliably bio-indicate metal deposition from traffic emissions in one scenic spot and Brachythecium piligerum is a good moss for bio-indicating element content from traffic emissions at Jiuzhaigou World natural Heritage. Determined the 10 element contents in 4 areas through 3 kinds of moss we found that, 1) Ca, Mg, Zn, K and Cu element content is higher in the Huanglong area than in other areas, The P element content in Mt. Jiajin is higher than other areas, Fe and Al element content is higher in the Mt. Jiajin than in other areas. 2) The content of C had no significant correlation with age. As for N, this significant correlation found in Hyolcomium splendens (Hedw.) with 2 habitat in Huanglong, Actinothuidium Hookeri (Mitt.) and Hyolcomium splendens (Hedw.) with undergrowth in Jiuzhai, Hyolcomium splendens (Hedw.) in Mt. Mengbi. The types of elements which content showt he significant correlation are most in Hyolcomium splendens (Hedw.) and least in Thuidium cymbifolium. Except Actinothuidium Hookeri (Mitt.), the types of elements that content had significant correlation with age in forest gap are more than in undergrowth. 3) The elements which content had significant correlation with habitat are P, Ca and Mg in Thuidium cymbifolium in Huanglong, Zn in Actinothuidium Hookeri (Mitt.) in Jiuzhai, Al, Fe and Zn in Hyolcomium splendens (Hedw.) in Mt. Jiajin, in Mt. Mengbi Al, Fe and Mg in Thuidium cymbifolium and Ca in Actinothuidium Hookeri (Mitt.). 4)The region, the age and the habitat factor has coeffect element content. The correlationship between element contents and the age, the region is closer than habitat.
Resumo:
对隆肛蛙属的物种构成进行了订正,建立新属肛刺蛙属Yerana gen. nov.;订正后的隆肛蛙属现仅隶2种, 即隆肛蛙F. quadrana和太行隆肛蛙F. taihangnicus。运用形态学分析探讨了隆肛蛙属物种及种群的形态差异和分类关系,通过分子系统学研究探讨了隆肛蛙属物种及种群的分类和系统发育关系,运用动物地理学方法结合系统发育关系探讨了隆肛蛙属种群的地理分布格局成因与历史过程。主要结果和推论如下: 1.隆肛蛙属物种构成的订正及一新属建立 建立新属肛刺蛙属,将隆肛蛙属中的原叶氏隆肛蛙F. yei归隶新属肛刺蛙属并更名为叶氏肛刺蛙Y. yei,,新属建立的主要依据为:(1)雄性肛部隆起,肛孔下方有两个布满黑刺的大的白色球形隆起,具单咽下内声囊, 第一指具婚刺;(2)形态量度分析表明叶氏肛刺蛙与隆肛蛙和太行隆肛蛙的形态差异远大于后两者之间的差异;(3)叶氏肛刺蛙的分布区与隆肛蛙和太行隆肛蛙的分布区距离较远且呈隔离状态;(4)分子系统学研究资料(Jiang et al.,2005)证明叶氏肛刺蛙与隆肛蛙和太行隆肛蛙非单系发生;叶氏肛刺蛙在第二支中位于基部。因此,隆肛蛙属现仅隶2种,即隆肛蛙和太行隆肛蛙。 2.隆肛蛙属种群形态学研究 对隆肛蛙属中隆肛蛙和太行隆肛蛙的15个地理种群565只标本的28项形态性状进行了测量,运用典型判别分析法对其分析的结果表明:(1)太行隆肛蛙与隆肛蛙形态差异明显,支持其为不同的物种;(2)原隆肛蛙河南伏牛山种群和山西中条山种群应为太行隆肛蛙的地理种群;(3)隆肛蛙不同地理种群之间形态差异明显,其中四川安县种群、陕西周至种群和湖北利川种群与模式产地重庆巫山种群的差异可能达到了亚种或亚种以上分化水平。对隆肛蛙属量度分析的15个种群进行定性形态分析表明其分为三种形态型,对应隆肛蛙、过渡型和太行隆肛蛙,其变异特征主要为内跗褶、雄性肛部隆起及疣粒分布、第五趾外侧缘膜等,这与量度分析结果相似。 3.隆肛蛙属种群分子系统学研究 测定隆肛蛙属Feirana的2种19种群的线粒体12S rRNA和16S rRNA基因片段、ND2基因的DNA序列,比对后共计1953bps。(1)遗传多样性与距离分析:结果表明,隆肛蛙属种群具很高的遗传多样性,19个种群样品表现出19种单倍型(遗传多样性指数Hd=1.0); ND2基因的进化信息含量远高于12SrRNA和16SrRNA。隆肛蛙属2种群组内的种群间的遗传距离远小于两种群组间的距离,种群在不同基因上的遗传距离表现的关系与对应的系统树一致。(2)系统发育关系分析:结果表明,不同基因片断基于不同方法构建的隆肛蛙属种群系统发育树结构基本一致,基本表明隆肛蛙属种群为单系发生;它们在系统树中分为两大支,分别对应于隆肛蛙和太行隆肛蛙;支持中条山种群(沁水、历山和济源种群)和伏牛山种群(栾川和内乡种群)为太行隆肛蛙的地理种群,而原隆肛蛙秦岭中东段的部分种群(柞水、宁陕、长安大坝沟种群)也应为太行隆肛蛙的地理种群。(3)亚种分化分析:根据遗传距离分析和系统发育关系分析结果,并考虑形态上的差异情况以及地理分布信息,隆肛蛙所隶种群组可分为2亚种,即隆肛蛙指名亚种F. quadrana quadrana包括四川盆地东缘大巴山东段-巫山-武陵山北麓种群和秦岭中段(周至板房子和长安广货街)种群,他们在系统关系树上聚为一支;安县亚种F. quadrana anxianensis包括四川盆地西缘岷山东麓-龙门山-大巴山和秦岭西段的种群(安县、青川、文县、南江和凤县种群),他们在系统关系树上聚为一支。太行隆肛蛙所隶种群组也可分为2亚种,即太行隆肛蛙指名亚种F. taihangnicus taihangnicus包括中条山的种群(沁水、历山和济源种群)和中东秦岭的部分种群(柞水、长安大坝沟和宁陕种群),他们在系统关系树上聚为一支;太行隆肛蛙伏牛亚种F. taihangnicus funiuensis,为伏牛山地区的种群(栾川和内乡种群),他们在系统关系树上聚为一支。 4.隆肛蛙属种群动物地理学研究 隆肛蛙属19种群的分歧年代分析: 以长江巫山段和黄河三门峡段的形成历史时期为参考点,根据已测隆肛蛙属19种群及其外群包括N. pleski、P. yunnanesis、P. robertingeri、F. limnocharis的1953bps DNA序列构建分子钟,获得各支系的分歧年代。结果表明:①棘蛙族在70Ma左右开始其独立演化历程,这与Roelants et al.(2004)的分析结果~60±15Ma左右开始分化基本一致,后者印证了本文的分子钟。②隆肛蛙属的起始分化年代较早,隆肛蛙和太行隆肛蛙两种群组的最近祖先种群大概在46Ma~50Ma左右;隆肛蛙和太行隆肛蛙种群组内的种群分化年代相对两种群组间晚得多, 隆肛蛙种群组内两亚种分化起始年代约为10Ma左右,而太行隆肛蛙种群组内两亚种分化起始年代约为6Ma。 隆肛蛙属种群分布格局形成过程分析: ①隆肛蛙属的系统关系与地理分布格局密切相关,大部分系统分支分级与地理距离成正比;②隆肛蛙属最近祖先种群的分化中心可能位于秦岭中部地区, 隆肛蛙属的种群分布格局的形成表现为隔离分化与扩散相结合的机制,由隔离分化产生的隆肛蛙祖先种群主要从秦岭中部向西南方向扩散,后隔离分化为两亚种;太行隆肛蛙祖先种群向东北方向扩散也分化为两亚种。 隆肛蛙属种群分布区域地质历史的探讨:本文所建分子钟和种群分化方式印证了该区域的几次主要地质事件,包括岷山-龙门山-西秦岭等地区的快速差异隆起、第四纪冰期等。 The specific composition of the genus Feirana should be revised. A new genus Yerana gen. nov.(Ranidae:Dicroglossinae)was established based on morphological data-set and molecular phylogeny, as a result, only two species F. quadrana and F. taihangnicus are classified into Feirana now. Morphological differences and taxonomy of populations of Feirana were investigated based on morphological and morphometric data; phylogenetic relationships and taxonomy of populations of Feirana were elucidated using molecular data, and then the proceeding of the distribution pattern of populations of Feirana were discussed. The main results and conclusions and proposals were presented as following: 1. Revising of the specific composition of the genus Feirana and establishment of a new genus The new genus Yerana, only containing the type species Y. yei, was established based on the following evidences: (1) In adult male, distinct up-heaved circular vesicle presents around the anal, and under anal there are two white balls on which black spines exist, black horny spines scatter on the upper side of first finger, and internal single subgular vocal sac presents; (2) there is obvious morphometric differences between Yerana and Feirana; (3) Yerana is distributed far from Feirana; (4) evidences of molecular phylogeny(Jiang et al.,2005)suggested that Yerana take a special phylogenetic clade which is different from other genus included in the tribe Paini. As a result, there are only two species in Feirana, i.e., F. quadrana and F. taihangnicus. 2. Morphological research of populations of Feirana Twenty-eight characters of 565 individuals of 15 populations of the genus Feirana were measured, the results of Canonical Discriminant analysis of the morphometric data-set indicated that: (1) there are very prominent differences between the two species F. quadrana and F. taihangnicus. The validity of species F. taihangnicus was approved here; (2) Mt. Funiu population and Mt. Zhongtiao population should belong to the species F. taihangnicus; (3) Obvious differences exist among 12 populations of F. quadrana, the differentiation among Zhouzhi population, Anxian population, Lichuan population, and Wushan population together with the others probably reach sub-specific or specific level. Result of morphological comparison between 15 different populations show that 3 morphological types are recogenized in according with F. quadrana, F. taihangnicus and intergradation, this result conform to the result of morphometric analysis. 3. Molecular phylogenetic study on populaions of Feirana Fragment of 12SrRNA and 16SrRNA genes, and ND2 gene of 19 populations of two species of Feirana were sequenced and aligned, from which 1953 bps were received. (1) analyses of genetic distance and hereditary diversity indicated that: genetic distance between populations in each group were less than distance between two groups of Feirana, 19 haplotypes were recognized from 19 samples of 19 populations, so the hereditary diversity of populations of Feirana was very high (Hd=1.0), phylogenetic information in ND2 gene is more than fragment sequence of 12SrRNA and 16SrRNA genes. (2) Result of molecular phylogeny indicate that the phylogenetic trees constructed using different methods based on different sequence data sets showed the revised genus Feirana is monophyletic since the 19 populations of Feirana were firstly clustered together as one large clade, which was further clustered into two major clades, corresponding to F. quadrana(GroupⅠ) and F. taihangnicus(GroupⅡ), respectively. So populations of Qinshui and Lishan in Mt. Zhongtiao, populations of Luanchuan and Neixiang in Mt. Funiu, and populations of Zhashui, Dabagou of Chang’an and Ningshan in eastern Mt. Qinling should belong to the species F. taihangnicus; (3) Subspecific differentiation. on the basis of genetic distance, phylogenetic trees and geographical distribution, F. quadrana should have two subspecies, i.e., F. quadrana qudadrana, consisting of the populations Guanghuojie of Chang’an and Zhouzhi in Mid-Mt. Qinling, populations in Wushan area and northern Mt. Wuling (Lichuan), and F. qudadrana anxianensis, consisting of the populations in eastern Mt. Ming shan-Mt. Longmen-western Mt. Daba-western Mt. Qinling (Anxian, Qingchuan, Wenxian, Nanjiang and Fengxian); F. taihangnicus should also has two subspecies, i.e., F. taihangnicus taihangnicus, consisting of the populations in Mt. Zhongtiao and eastern Mt. Qinling, and F. taihangnicus funiuensis, consisting of the populations in Mt. Funiu. 4. Zoogeography of populaions of Feirana Analysis for divergent time of 19 populations of Feirana: Using the dates of run-through of Wushan segment of Changjiang River as the time when the population of Lichuan started differentiated from the populations of Wushan and Shennongjia, and the dates of Sanmenxia segment of Yellow River as the time when the populations in Mt. Zhongtiao started differentiated from the population of Dabagou in Chang’an, molecular clock was established using sequences with 1953 bps of 19 populations of Feirana and outgroup including N. pleski, P. yunnanesis, P. robertingeri, F. limnocharis in order to estimate divergent time of all clades. Result of that indicated that: ① the tribe Paini started to evolve independently at about 70Ma when is in consistent with that estimated by Roelants et al.(2004)with result of about ~60±15Ma, they were corroborated by each other, this confirms the validity of this molecular clock; ② divergent time for speciation of Feriana is early, ancestral populations of F. quadrana and F. taihangnicus were found about 46Ma~50Ma; differentiation of populations within species is greatly late to the divergence of the two species, divergent time for F. quadrana is 10Ma and divergent time for F. taihangnicus is 6Ma. Proceeding of distribution pattern of Feirana. Phylogenetic relationships of populations of Feirana matched quite with distribution pattern of them, the relationships among clades showed in phylogenetic trees is direct ratio to geographical distance of them; the estimated date of speciation between two species of Feirana was as early as speciation of Paa yunnanesis and Nanara pleski; middle part of Mt. Qinling is the center of speciation of Feirana, combination of mult-events of dispersal and vicariance are probably the mechanism of speciation of Feirana, F. quadrana colonized the mid-Mt. Qinling and then differentiated into two subspecies in southwest direction, ancestral population of F. taihangnicus colonized the mid-Mt. Qinling and then differentiated into two subspecies in northeast direction. On geological history of the distribution of Feirana. According to molecular clock and speciation model of populations of Feirana, some geological events are confirmed, including special rise of Mt. Minshan- Mt. Longmen-western Mt. Qinling, glacial age.
Resumo:
大熊猫(Ailuropoda melanoleuca)是我国特有的珍稀濒危物种,国家Ⅰ级重点保护野生动物,被称为“国宝”。目前,大熊猫被局限在我国中西部的岷山、邛崃、大相岭、小相岭、凉山和秦岭6大山系中。对大熊猫的保护和研究,我国政府、保护生物学科研人员、社会各界及国际保护组织都做了大量的工作。根据全国三次大熊猫调查结果显示,大熊猫栖息地片段化现象依然存在,形成多个隔离的大熊猫小种群。尤其在小相岭、大相岭、岷山B和岷山C种群,大熊猫数量较少,且栖息地破碎,面临较大威胁。有的山系大熊猫种群数量些已低于最小可存活大熊猫种群的数量,如果不采取人工措施,这些种群的大熊猫存在灭绝的危险。 将圈养大熊猫放归野外,以补充野外大熊猫种群数量,增加其遗传多样性,复壮和扩大野生大熊猫种群,是大熊猫人工繁育的最终目标。为降低放归的风险性,在放归人工繁育大熊猫前,将救护存活的野生大熊猫先有计划放归野外,并对其进行跟踪监测,对积累大熊猫放归经验,进一步研究大熊猫野外生物学习性,丰富放归地大熊猫种群遗传多样性,为人工繁育大熊猫放归野外夯实基础,具有十分重要的意义。2005年8月8日,国家林业局和四川省人民政府联合将救护野生大熊猫“盛林1号”放归于龙溪-虹口国家级自然保护区内岷山B大熊猫种群栖息地,并进行系统监测研究。成功的积累了一些放归经验和放归大熊猫的生物学资料,为人工繁育大熊猫的放归奠定了一定基础。 2005年8月至2007年6月期间,我们采用GPS无线电项圈、粪便DNA检测和红外线自动触发相机陷阱的方法,对大熊猫“盛林1号”进行了追踪监测,获得了以下成果: 1.通过分析“盛林1号”放归后了活动趋势和采用两种贝叶斯方法,利用目前五大山系的已有微卫星遗传数据,检测“盛林1号”与五大山系的遗传关系的远近,推测其来源于邛崃山系的可能性较大。 2.收集了大量“盛林1号”野外生境选择数据。我们认为“盛林1号”放归后经历了应急期、初步稳定期、长途迁徙期三个阶段(这可能是今后放归大熊猫都必经的三个时期),并与当地大熊猫种群已发生交流。目前“盛林1号”仍在寻找适合的巢域。 3.结合过去监测数据分析,在放归区域大熊猫和羚牛尽管同域分布,但由于食性不同,对微生境选择还是有着很大差异,因此保护管理对策要有针对性。 4.“盛林1号”的放归是成功的。救护大熊猫异地放归工作应继续开展,但要改进放归后的监测技术。要改进现有对人工饲养大熊猫野化培训方法和放归方式,才能真正将人工繁殖个体放归野外。 Giant Panda (Ailuropoda melanoleuca) is an endangered species endemic to China. It was listed as National Protected I Class Species and is crowned as “National treasure” of China. The populations of Giant Panda are limited in 6 mountain system in Center-West of China, i.e. Mingshan, Mt. Qionglai, Mt. Daxiangling,Mt. Xiaoxiangling, Mt. Liangshan and Mt. Qinling. The results of the Third National Survey on Giant Panda showed that the habitats of Giant Panda is still fracted and Giant Panda population is divided into several isolated small populations. Population B from Mt. Daxiangling, Mt. Xiaoxiangling and Mt. Mingshan and Population C from Mt. Mingshan are very small with very fracted habitat and are more endangered. Several populations in those mountain systems are smaller than Minimum Viable Population of Giant Panda. It is very possible that those populations will be extinct without artificial help. The ultimate Goal of Reintroduction caged Giant Panda to wild is to increase wild population size and genetics diversity and rebuild and expand wild Giant Panda population. It is of significant to return rescued wild Giant Panda to wild and monitor their behavior before reintroduction artificial reproduced Giant Panda. It will increase our knowledge on reintroduction of Giant Panda. Aug 8th, 2005, “Shenglin 1”, a rescued wild Giant Panda was returned to Longxi-Hongkou National Nature Reservoir, which is habitat of Giant Panda Population B of Mt. Mingshan. A systematic monitor was carried out on “Shenglin 1”, and the successful return enriched our biological knowledge on Giant Panda reintroduction. It will be very help for future conservation work on reintroduce artificial reproduced Giant Panda. “Shenglin 1” was tracked with GPS collar, DNA in feces and infrared-trigged camera from Aug 2005 to Jun 2007. 1. Locomotion behavior and microsatellites comparison with Giant Panda from the 5 mountain systems indicated that “Shenglin 1” is possibly from Mt. Qionglai. 2. Habitat usage of “Shenglin 1” was studied. It was suggested that there were 3 phases after return, i.e. emergency response, preliminary stable phase and long distance locomotion, which could be a general process for other returned Giant Panda. It was indicated that there was some interaction between “Shenglin 1” and local population. “Shenglin 1” is seeking for suitable home range now. 3. Monitor data also indicated that microhabitat preference of Giant Panda and takin (Budorcas taxicolor) are different because of different diet, though they are sympatric. It was suggested that conservation management for the two species should be plan in particular. 4. The reintroduction of “Shenglin 1” is a successful case. The program of return rescued Giant Panda to other habitats is of value and should be continued. However, more improvement is needed for the monitor technique. More improvement is need for feralization and returning before we return artificial reproduced Giant Panda to wild.
Resumo:
The construction and commissioning of HIRFL-CSR were finished in 2007. From 2000 to 2005 the subsystem and key devices of CSR were successfully fabricated, such as magnet, power supply, UHV system, e-cooler, electric-static deflector with the septum of 0.1 mm, and the fast-pulse kicker with the rise time of 150 ns. After that the CSR commissioning activities were performed in 2006 and 2007, including the accumulation of those heavy ions of C, Ar, Kr and Xe by the combination of stripping injection (STI) or multiple multi-turn injection (MMI) and e-cooling with a hollow e-beam, wide energy-range synchrotron ramping by changing the RF harmonic-number at mid-energy, the beam stacking in the experimental ring CSRe, the RIBs mass-measurement with the isochronous-mode in CSRe by using the time-of-flight method, and the ion beam slow-extraction from CSRm.
Resumo:
Electron cyclotron resonance (ECR) ion sources have been used for atomic physics research for a long time. With the development of atomic physics research in the Institute of Modern Physics (IMP), additional high performance experimental facilities are required. A 300 kV high voltage (HV) platform has been under construction since 2003, and an all permanent magnet ECR ion source is supposed to be put on the platform. Lanzhou all permanent magnet ECR ion source No. 2 (LAPECR2) is a latest developed all permanent magnet ECRIS. It is a 900 kg weight and circle divide 650 mm X 562 mm outer dimension (magnetic body) ion source. The injection magnetic field of the source is 1.28 T and the extraction magnetic field is 1.07 T. This source is designed to be running at 14.5 GHz. The high magnetic field inside the plasma chamber enables the source to give good performances at 14.5 GHz. LAPECR2 source is now under commissioning in IMP. In this article, the typical parameters of the source LAPECR2 are listed, and the typical results of the preliminary commissioning are presented.
Resumo:
Superconducting electron cyclotron resonance (ECR) ion source with advanced design in Lanzhou (SECRAL) is a next generation ECR ion source and aims for developing a very compact superconducting ECR ion source with a structure and high performances for highly charged ion-beam production. The ion source was designed to be operated at 18 GHz at initial operation and finally will be extended to 28 GHz. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. At full excitation, this magnet assembly can produce peak mirror fields on the axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. What is different from the traditional design, such as LBNL VENUS and LNS SERSE, is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. SECRAL may open the way for building a compact and high-performance 18-28 GHz superconducting ECR ion source. Very preliminary commissioning results are promising. Detailed design, construction issues and very preliminary test results of the ion source at 18 GHz are presented.
Resumo:
HIRFL was upgraded from beginning 2000. Besides of researches on nuclear physics, atomic physics, irradiative material and biology, the cancer therapy by heavy ion and hadron physics are being developing. The injector system of SFC+SSC can provide all ions from proton to uranium with higher intensity. The Cooling Storage Ring (CSR) has accelerated beams successful. The ions C-12(6+), Ar-36(18+), Xe-129(27+) have been accelerated up 1000MeV/u, 235MeV/u with about 10(9)similar to 10(8) ions per spill respectively. The beam momentum dispersion was measured from 4x10(-3) to 2x10(-4) after cooling by the electron cooler or similar to 4x10(-4) after accelerated to 1000MeV/u without cooling. In order to improve the nuclear structure and heavy isotope research in SFC+SSC energy domain, A Wien filter was added in front of RIBLL and gas was filled in first section of RIBLL; a new spectrometry SHANS has being installed. Presently, there are two starting version experimental setups at CSR.
Resumo:
The status of heavy-ion cancer therapy has been reviewed. The existing and constructing heavy-ion beam facilities for cancer therapy in the world are introduced. The first clinical trials of superficially placed tumor therapy at heavy ion research facility in Lanzhou (HIRFL) are presented.