955 resultados para transition metal cluster


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thermal decomposition of pyrrolidinedithiocarbamate and piperidinedithiocarbamate complexes of CoII, NiII, CuII and HgII have been studied by thermogravimetry and differential scanning calorimetry. The decomposition intermediates and final products were identified by their X-ray diffraction patterns. The i.r. spectra are discussed in terms of the thermal decomposition pathways.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transition-metal (TM)-doped diluted magnetic oxides (DMOs) have attracted attention from both experimental and theoretical points of view due to their potential use in spintronics towards new nanostructured devices and new technologies. In the present work, we study the magnetic properties of Sn0.96TM0.04O2 and Sn0.96TM0.04O1.98(V (O))(0.02), where TM = Fe and Co, focusing in particular in the role played by the presence of O vacancies nearby the TM. The calculated total energy as a function of the total magnetic moment per cell shows a magnetic metastability, corresponding to a ground state, respectively, with 2 and 1 mu(B)/cell, for Fe and Co. Two metastable states, with 0 and 4 mu(B)/cell were found for Fe, and a single value, 3 mu(B)/cell, for Co. The spin-crossover energies (E (S)) were calculated. The values are E (S) (0/2) = 107 meV and E (S) (4/2) = 25 meV for Fe. For Co, E (S) (3/1) = 36 meV. By creating O vacancies close to the TM site, we show that the metastablity and E (S) change. For iron, a new state appears, and the state with zero magnetic moment disappears. The ground state is 4 mu(B)/cell instead of 2 mu(B)/cell, and the energy E (S) (2/4) is 30 meV. For cobalt, the ground state is then found with 3 mu(B)/cell and the metastable state with 1 mu(B)/cell. The spin-crossover energy E (S) (1/3) is 21 meV. Our results suggest that these materials may be used in devices for spintronic applications that require different magnetization states.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nitrosyl ruthenium complex, trans-[RuCl([15]aneN(4))NO](PF6)(2), ([15]aneN(4) = 1,4,8,12-tetraazacyclopentadecane), exhibits vasorelaxation characteristics attributed to its nitric oxide release properties. The observed in vitro and in vivo vasodilation is dependent on noradrenaline concentration. We report here the chemical mechanism of the reaction between noradrenaline and trans-[RuCl([15]aneN(4))NO](PF6)(2) in aqueous phosphate buffer solution at pH 7.40. NO measurement by NO-sensor electrode, cyclic voltammetry, (PNMR)-P-31 and HPLC analysis were used to investigate the reduction process as the fundamental step for NO release characteristic of trans-[RuCl([15]aneN(4))NO](PF6)(2). A supramolecular species containing HPO4 (2-) as a bridging group between noradrenaline and trans-[RuCl([15]aneN(4))NO](PF6)(2) is suggested as an intermediate prior to the reduction of the nitrosyl ruthenium complex.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The metallic carbides exhibit many novel prototypes of crystalline structure. Among these compounds Th2NiC2 was reported in 1991 as a new carbide which crystallizes in the U2IrC2 prototype structure. In this work we report a reinvestigation of the synthesis of this compound. We find that Th2NiC2 is a new superconductor. Our results suggest that this phase is stable only at high temperatures in the system Th-Ni-C. The substitution of Th by Sc stabilizes the phase and improves the superconducting properties. The highest superconducting critical temperature occurs at 11.2 K with nominal composition Th1.8Sc0.2NiC2. The electronic coefficient determined by specific heat measurements is close to zero. This unusual result can be explained by covalent bonding in the compound.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We studied the spin-polarized charge densities in II-VI-based diluted magnetic superlattices formed of p-doped ZnTe:Mg/ZnTe:TM/ZnTe:Mg non-magnetic/magnetic/non-magnetic layers, with TM standing for transition metal. The calculations were performed within a self-consistent k.p method, in which are also taken into account the exchange correlation effects in the local density approximation. Our results show a limit for the width of the non-magnetic layer for which the difference between the opposite spin charge densities is maximized, indicating the best conditions to obtain full polarization by varying the TM content. We also discuss these effects in the calculated photoluminescence spectra. Our findings point to the possibility of engineering the spin-polarized charge distribution by varying the widths of the magnetic and non-magnetic layers and/or varying the TM concentration in the magnetic layers, thus providing a guide for future experiments. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phosphine ruthenate complexes containing the non-innocent ligands 4-chloro-1,2-phenylenediamine (opda-CI) and 3,3',4,4'-tetraamminebiphenyl (diopda) were synthesized and characterized by means of X-ray diffraction, electrochemistry, P-31{H-1} NMR and electronic spectroscopies. Crystals of cis-[RuCl2 (dppb)(bqdi-CI)] complex were isolated as a mixture of two conformational isomers due to different positions of the chlorine atoms of the o-phenylene ligand in relation to the P1 atom of the phosphine moiety. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reduction of nitrate on palladium-modified platinum single-crystal electrodes has been investigated both voltammetrically and spectroscopically in acidic media (pH = 1). Results obtained in H2O and D2O solvents are compared for the three crystallographic orientations. FTIR and differential electrochemical mass spectrometry (DEMS) results clearly indicate that the isotopic substitution of the solvent has a large effect in the mechanism of the reaction, changing the nature of the detected products. For Pt(111)/Pd and Pt(100)/Pd, N2O is detected as the main product of nitrate reduction when D2O is used as solvent, while no N2O is detected when the reaction is performed in H2O. For Pt(110)/Pd, N2O is detected in both solvents, although the use of D2O clearly favours the preferential formation of this product. The magnitude of voltammetric currents is also affected by the nature of the solvent. This has been analysed considering, in addition to the different product distribution, the existence of different transport numbers and optical constants of the solvent.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ZnO and doped M:ZnO (M = V, Fe and Co) nanostructures were synthesized by microwave hydrothermal synthesis using a low temperature route without addition of any surfactant. The transition metal ions were successfully doped in small amount (3% mol) into ZnO structure. Analysis by X-ray diffraction reveals the formation of ZnO with the hexagonal (wurtzite-type) crystal structure for all the samples. The as-obtained samples showed a similar flower-like morphology except for Fe:ZnO samples, which presented a plate-like morphology. The photocatalytic performance for Rhodamine B (RhB) degradation confirmed that the photoactivity of M:ZnO nanostructures decreased for all dopants in structure, according to their eletronegativity. Photoluminescence spectroscopy was employed to correlate M:ZnO structure with its photocatalytical properties. It was suggested that transition metal ions in ZnO lattice introduce defects that act as trapping or recombination centers for photogenerated electrons and holes, making it impossible for them reach the surface and promote the photocatalytical process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pt extended surfaces and nanoparticle electrodes are used to understand the origin of anomalous activities for electrocatalytic reactions in alkaline electrolytes as a function of cycling/time. Scanning tunneling microscopy (STM) of the surfaces before and after cycling in alkaline electrolytes was used to understand the morphology of the impurities and their impact on the catalytic sites. The nature of the contaminant species is identified as 3d-transition metal cations, and the formation of hydr(oxy)oxides of these elements is established as the main reason for the observed behavior. We find that, while for the oxygen reduction reaction (ORR) and the hydrogen oxidation reaction (HOR) the blocking of the sites by the undesired 3d-transition metal hydr(oxy)oxide species leads to deactivation of the reaction activities, the CO oxidation reaction and the hydrogen evolution reaction (HER) can have beneficial effects from the same impurities, the latter being dependent on the exact nature of the adsorbing species. These results show the significance of impurities present in real electrolytes and their impact on electrocatalysis.