864 resultados para technology-enhanced learning
Resumo:
Technology is impacting on most elements of organisations today and workforce development professionals have been some of the leading proponents of embracing technologies and the benefits they offer. E-learning has emerged as at least a complementary offering to face-to-face training, and in some cases has totally replaced more traditional forms of workforce development. This chapter explores the use of learning technologies and the benefits and drawbacks of their use. In particular it focuses on further exploring the issue of a perceived lack of interaction in some e-learning offerings; a factor identified as critical to address in order to ensure effective e-learning. The chapter discusses the issues of interaction and social presence to address feelings of isolation and offers some key considerations for those considering integrating technology into workforce development.
Resumo:
A guide to utilising multi-media for teaching and learning.
Resumo:
In this age of rapidly evolving technology, teachers are encouraged to adopt ICTs by government, syllabus, school management, and parents. Indeed, it is an expectation that teachers will incorporate technologies into their classroom teaching practices to enhance the learning experiences and outcomes of their students. In particular, regarding the science classroom, a subject that traditionally incorporates hands-on experiments and practicals, the integration of modern technologies should be a major feature. Although myriad studies report on technologies that enhance students’ learning outcomes in science, there is a dearth of literature on how teachers go about selecting technologies for use in the science classroom. Teachers can feel ill prepared to assess the range of available choices and might feel pressured and somewhat overwhelmed by the avalanche of new developments thrust before them in marketing literature and teaching journals. The consequences of making bad decisions are costly in terms of money, time and teacher confidence. Additionally, no research to date has identified what technologies science teachers use on a regular basis, and whether some purchased technologies have proven to be too problematic, preventing their sustained use and possible wider adoption. The primary aim of this study was to provide research-based guidance to teachers to aid their decision-making in choosing technologies for the science classroom. The study unfolded in several phases. The first phase of the project involved survey and interview data from teachers in relation to the technologies they currently use in their science classrooms and the frequency of their use. These data were coded and analysed using Grounded Theory of Corbin and Strauss, and resulted in the development of a PETTaL model that captured the salient factors of the data. This model incorporated usability theory from the Human Computer Interaction literature, and education theory and models such as Mishra and Koehler’s (2006) TPACK model, where the grounded data indicated these issues. The PETTaL model identifies Power (school management, syllabus etc.), Environment (classroom / learning setting), Teacher (personal characteristics, experience, epistemology), Technology (usability, versatility etc.,) and Learners (academic ability, diversity, behaviour etc.,) as fields that can impact the use of technology in science classrooms. The PETTaL model was used to create a Predictive Evaluation Tool (PET): a tool designed to assist teachers in choosing technologies, particularly for science teaching and learning. The evolution of the PET was cyclical (employing agile development methodology), involving repeated testing with in-service and pre-service teachers at each iteration, and incorporating their comments i ii in subsequent versions. Once no new suggestions were forthcoming, the PET was tested with eight in-service teachers, and the results showed that the PET outcomes obtained by (experienced) teachers concurred with their instinctive evaluations. They felt the PET would be a valuable tool when considering new technology, and it would be particularly useful as a means of communicating perceived value between colleagues and between budget holders and requestors during the acquisition process. It is hoped that the PET could make the tacit knowledge acquired by experienced teachers about technology use in classrooms explicit to novice teachers. Additionally, the PET could be used as a research tool to discover a teachers’ professional development needs. Therefore, the outcomes of this study can aid a teacher in the process of selecting educationally productive and sustainable new technology for their science classrooms. This study has produced an instrument for assisting teachers in the decision-making process associated with the use of new technologies for the science classroom. The instrument is generic in that it can be applied to all subject areas. Further, this study has produced a powerful model that extends the TPACK model, which is currently extensively employed to assess teachers’ use of technology in the classroom. The PETTaL model grounded in data from this study, responds to the calls in the literature for TPACK’s further development. As a theoretical model, PETTaL has the potential to serve as a framework for the development of a teacher’s reflective practice (either self evaluation or critical evaluation of observed teaching practices). Additionally, PETTaL has the potential for aiding the formulation of a teacher’s personal professional development plan. It will be the basis for further studies in this field.
Resumo:
There is currently a wide range of research into the recent introduction of student response systems in higher education and tertiary settings (Banks 2006; Kay and Le Sange, 2009; Beatty and Gerace 2009; Lantz 2010; Sprague and Dahl 2009). However, most of this pedagogical literature has generated ‘how to’ approaches regarding the use of ‘clickers’, keypads, and similar response technologies. There are currently no systematic reviews on the effectiveness of ‘GoSoapBox’ – a more recent, and increasingly popular student response system – for its capacity to enhance critical thinking, and achieve sustained learning outcomes. With rapid developments in teaching and learning technologies across all undergraduate disciplines, there is a need to obtain comprehensive, evidence-based advice on these types of technologies, their uses, and overall efficacy. This paper addresses this current gap in knowledge. Our teaching team, in an undergraduate Sociology and Public Health unit at the Queensland University of Technology (QUT), introduced GoSoapBox as a mechanism for discussing controversial topics, such as sexuality, gender, economics, religion, and politics during lectures, and to take opinion polls on social and cultural issues affecting human health. We also used this new teaching technology to allow students to interact with each other during class – both on both social and academic topics – and to generate discussions and debates during lectures. The paper reports on a data-driven study into how this interactive online tool worked to improve engagement and the quality of academic work produced by students. This paper will firstly, cover the recent literature reviewing student response systems in tertiary settings. Secondly, it will outline the theoretical framework used to generate this pedagogical research. In keeping with the social and collaborative features of Web 2.0 technologies, Bandura’s Social Learning Theory (SLT) will be applied here to investigate the effectiveness of GoSoapBox as an online tool for improving learning experiences and the quality of academic output by students. Bandura has emphasised the Internet as a tool for ‘self-controlled learning’ (Bandura 2001), as it provides the education sector with an opportunity to reconceptualise the relationship between learning and thinking (Glassman & Kang 2011). Thirdly, we describe the methods used to implement the use of GoSoapBox in our lectures and tutorials, and which aspects of the technology we drew on for learning purposes, as well as the methods for obtaining feedback from the students about the effectiveness or otherwise of this tool. Fourthly, we report cover findings from an examination of all student/staff activity on GoSoapBox as well as reports from students about the benefits and limitations of it as a learning aid. We then display a theoretical model that is produced via an iterative analytical process between SLT and our data analysis for use by academics and teachers across the undergraduate curriculum. The model has implications for all teachers considering the use of student response systems to improve the learning experiences of their students. Finally, we consider some of the negative aspects of GoSoapBox as a learning aid.
Resumo:
Purpose To examine choroidal thickness (ChT) and its topographical variation across the posterior pole in myopic and non-myopic children. Methods One hundred and four children aged 10-15 years of age (mean age 13.1 ± 1.4 years) had ChT measured using enhanced depth imaging optical coherence tomography (OCT). Forty one children were myopic (mean spherical equivalent -2.4 ± 1.5 D) and 63 non-myopic (mean +0.3 ± 0.3 D). Two series of 6 radial OCT line scans centred on the fovea were assessed for each child. Subfoveal ChT and ChT across a series of parafoveal zones over the central 6mm of the posterior pole were determined through manual image segmentation. Results Subfoveal ChT was significantly thinner in myopes (mean 303 ± 79 µm) compared to non-myopes (mean 359 ± 77 µm) (p<0.0001). Multiple regression analysis revealed both refractive error (r = 0.39, p<0.001) and age (r = 0.21, p = 0.02) were positively associated with subfoveal ChT. ChT also exhibited significant topographical variations, with the choroid being thicker in more central regions. The thinnest choroid was typically observed in nasal (mean 286 ± 77 µm) and inferior-nasal (306 ± 79 µm) locations, and the thickest in superior (346 ± 79 µm) and superior-temporal (341 ± 74 µm) locations. The difference in ChT between myopic and non-myopic children was significantly greater in central foveal regions compared to more peripheral regions (>3 mm diameter) (p<0.001). Conclusions Myopic children have significantly thinner choroids compared to non-myopic children of similar age, particularly in central foveal regions. The magnitude of difference in choroidal thickness associated with myopia appears greater than would be predicted by a simple passive choroidal thinning with axial elongation.
Resumo:
Learning and memory depend on signaling mole- cules that affect synaptic efficacy. The cytoskeleton has been implicated in regulating synaptic transmission but its role in learning and memory is poorly understood. Fear learning depends on plasticity in the lateral nucleus of the amygdala. We therefore examined whether the cytoskeletal-regulatory protein, myosin light chain kinase, might contribute to fear learning in the rat lateral amygdala. Microinjection of ML-7, a specific inhibitor of myosin light chain kinase, into the lateral nucleus of the amygdala before fear conditioning, but not immediately afterward, enhanced both short-term memory and long-term memory, suggesting that myosin light chain kinase is involved specifically in memory acquisition rather than in posttraining consolidation of memory. Myosin light chain kinase inhibitor had no effect on memory retrieval. Furthermore, ML-7 had no effect on behavior when the train- ing stimuli were presented in a non-associative manner. An- atomical studies showed that myosin light chain kinase is present in cells throughout lateral nucleus of the amygdala and is localized to dendritic shafts and spines that are postsynaptic to the projections from the auditory thalamus to lateral nucleus of the amygdala, a pathway specifically impli- cated in fear learning. Inhibition of myosin light chain kinase enhanced long-term potentiation, a physiological model of learning, in the auditory thalamic pathway to the lateral nu- cleus of the amygdala. When ML-7 was applied without as- sociative tetanic stimulation it had no effect on synaptic responses in lateral nucleus of the amygdala. Thus, myosin light chain kinase activity in lateral nucleus of the amygdala appears to normally suppress synaptic plasticity in the cir- cuits underlying fear learning, suggesting that myosin light chain kinase may help prevent the acquisition of irrelevant fears. Impairment of this mechanism could contribute to pathological fear learning.
Resumo:
In 2012, Australia introduced a new National Quality Framework, comprising enhanced quality expectations for early childhood education and care services, two national learning frameworks and a new Assessment and Rating System spanning child care centres, kindergartens and preschools, family day care and outside school hours care. This is the linchpin in a series of education reforms designed to support increased access to higher quality early childhood education and care (ECEC) and successful transition to school. As with any policy change, success in real terms relies upon building shared understanding and the capacity of educators to apply new knowledge and to support change and improved practice within their service. With this in mind, a collaborative research project investigated the efficacy of a new approach to professional learning in ECEC: the professional conversation. This paper reports on the trial and evaluation of a series of professional conversations to support implementation of one element of the NQF, the Early Years Learning Framework (DEEWR,2009), and their capacity to promote collaborative reflective practice, shared understanding, and improved practice in ECEC. Set against the backdrop of the NQF, this paper details the professional conversation approach, key challenges and critical success factors, and the learning outcomes for conversation participants. Findings support the efficacy of this approach to professional learning in ECEC, and its capacity to support policy reform and practice change in ECEC.
Resumo:
This column features a conversation (via email, image sharing, and Facetime) that took place over several months between two international theorists of digital filmmaking from schools in two countries—Professors Jason Ranker (Portland State University, Oregon, United States) and Kathy Mills (Queensland University of Technology, Australia). The authors discuss emerging ways of thinking about video making, sharing tips and anecdotes from classroom experience to inspire teachers to explore with adolescents the meaning potentials of digital video creation. The authors briefly discuss their previous work in this area, and then move into a discussion of how the material spaces in which students create videos profoundly shape the films' meanings and significance. The article ends with a discussion of how students can take up creative new directions, pushing the boundaries of the potentials of classroom video making and uncovering profound uses of the medium.
Resumo:
Emotions are inherently social, and are central to learning, online interaction and literacy practices (Shen, Wang, & Shen, 2009). Demonstrating the dynamic sociality of literacy practice, we used e-motion diaries or web logs to explore the emotional states of pre-service high school teachers’ experiences of online learning activities. This is because the methods of communication used by university educators in online learning and writing environments play an important role in fulfilling students’ need for social interaction and inclusion (McInnerney & Roberts, 2004). Feelings of isolation and frustration are common emotions experienced by students in many online learning environments, and are associated with the success or failure of online interactions and learning (Su, et al., 2005). The purpose of the study was to answer the research question: What are the trajectories of pre-service teachers’ emotional states during online learning experiences? This is important because emotions are central to learning, and the current trend toward Massive Open Online Courses (MOOCs) needs research about students’ emotional connections in online learning environments (Kop, 2011). The project was conducted with a graduate class of 64 high school science pre-service teachers in Science Education Curriculum Studies in a large Australian university, including males and females from a variety of cultural backgrounds, aged 22-55 years. Online activities involved the students watching a series of streamed live lectures for the first 5 weeks providing a varied set of learning experiences, such as viewing science demonstrations (e.g., modeling the use of discrepant events). Each week, students provided feedback on learning by writing and posting an e-motion diary or web log about their emotional response. Students answered the question: What emotions did you experience during this learning experience? The descriptive data set included 284 online posts, with students contributing multiple entries. Linguistic appraisal theory, following Martin and White (2005), was used to regroup the 22 different discrete emotions reported by students into the six main affect groups – three positive and three negative: unhappiness/happiness, insecurity/security, and dissatisfaction/satisfaction. The findings demonstrated that the pre-service teachers’ emotional responses to the streamed lectures tended towards happiness, security, and satisfaction within the typology of affect groups – un/happiness, in/security, and dis/satisfaction. Fewer students reported that the streamed lectures triggered negative feelings of frustration, powerlessness, and inadequacy, and when this occurred, it often pertained to expectations of themselves in the forthcoming field experience in classrooms. Exceptions to this pattern of responses occurred in relation to the fifth streamed lecture presented in a non-interactive slideshow format that compressed a large amount of content. Many students responded to the content of the lecture rather than providing their emotional responses to this lecture, and one student felt “completely disengaged”. The social practice of online writing as blogs enabled the students to articulate their emotions. The findings primarily contribute new understanding about students' wide range of differing emotional states, both positive and negative, experienced in response to streamed live lectures and other learning activities in higher education external coursework. The is important because the majority of previous studies have focused on particular negative emotions, such as anxiety in test taking. The research also highlights the potentials of appraisal theory for studying human emotions in online learning and writing.
Resumo:
Digital tablets have been identified as a tool for enabling blended learning and supporting online teaching and learning. A small scale trial was undertaken to assess the effectiveness of this technology when applied to power engineering education. Critical findings and experiences gained from this trial, including potential benefits, presentation techniques and the resulting student feedback are presented in this paper.
Resumo:
This project develops and evaluates a model of curriculum design that aims to assist student learning of foundational disciplinary ‘Threshold Concepts’. The project uses phenomenographic action research, cross-institutional peer collaboration and the Variation Theory of Learning to develop and trial the model. Two contrasting disciplines (Physics and Law) and four institutions (two research-intensive and two universities of technology) were involved in the project, to ensure broad applicability of the model across different disciplines and contexts. The Threshold Concepts that were selected for curriculum design attention were measurement uncertainty in Physics and legal reasoning in Law. Threshold Concepts are key disciplinary concepts that are inherently troublesome, transformative and integrative in nature. Once understood, such concepts transform students’ views of the discipline because they enable students to coherently integrate what were previously seen as unrelated aspects of the subject, providing new ways of thinking about it (Meyer & Land 2003, 2005, 2006; Land et al. 2008). However, the integrative and transformative nature of such threshold concepts make them inherently difficult for students to learn, with resulting misunderstandings of concepts being prevalent...
Resumo:
The modern day Australian law school is expected to educate and engage law students. Ideally law school will instil a sense of passion (or at least appreciation) for the law, promote a positive professional identity, foster a sense of community, and provide general support to law students. Collectively, the Australian legal academy is struggling with these goals. Significant numbers of students feel isolated, disconnected and unengaged throughout their tertiary legal education. Teaching students from increasingly diverse backgrounds, who spend less time on campus and less face-to-face time in class, many law academics feel ill-equipped to respond to the challenge of engaging law students in time and cost efficient ways. Intentionally learning and using student names has potential to humanise the law school experience, build community, and positively impact upon the wellbeing of students and staff.
Resumo:
This case study research investigated the extent to which Vietnamese teachers understood the concept of learner autonomy and how their beliefs about this concept were applied in their teaching practices. Data were collected through two phases of the study and revealed that teachers generally lacked understanding about learner autonomy; there was an alignment between this lack of understanding and teachers' actual teaching practices regarding learner autonomy. The findings of this study will provide teachers and policy-makers new insights into learner autonomy against the backdrop of educational reforms in Vietnam.
Resumo:
Several researchers have reported that cultural and language differences can affect online interactions and communications between students from different cultural backgrounds. Other researchers have asserted that online learning is a tool that can improve teaching and learning skills, but its effectiveness depends on how the tool is used. To delve into these aspects further, this study set out to investigate the kinds of learning difficulties encountered by the international students and how they actually coped with online learning. The modified Online Learning Environment Survey (OLES) instrument was used to collect data from the sample of 109 international students at a university in Brisbane. A smaller group of 35 domestic students was also included for comparison purposes. Contrary to assumptions from previous research, the findings revealed that there were only few differences between the international Asian and Australian students with regards to their perceptions of online learning. Recommendations based on the findings of this research study were made for Australian universities where Asian international students study online. Specifically the recommendations highlighted the importance of upskilling of lecturers’ ability to structure their teaching online and to apply strong theoretical underpinnings when designing learning activities such as discussion forums, and for the university to establish a degree of consistency with regards to how content is located and displayed in a learning management system like Blackboard.
Resumo:
Governments have recognised that the technological trades rely on knowledge embedded traditionally in science, technology, engineering and mathematics (STEM) disciplines. In this paper, we report preliminary findings on the development of two curricula that attempt to integrate science and mathematics with workplace knowledge and practices. We argue that these curricula provide educational opportunities for students to pursue their preferred career pathways. These curricula were co-developed by industry and educational personnel across two industry sectors, namely, mining and aerospace. The aim was to provide knowledge appropriate for students moving from school to the workplace in the respective industries. The analysis of curriculum and associated policy documents reveals that the curricula adopt applied learning orientations through teaching strategies and assessment practices which focus on practical skills. However, although key theoretical science and maths concepts have been well incorporated, the extent to which knowledge deriving from workplace practices is included varies across the curricula. Our findings highlight the importance of teachers having substantial practical industry experience and the role that whole school policies play in attempts to align the range of learning experiences with the needs of industry.