915 resultados para molecular dynamics method


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Molekulardynamik-Simulationen zu OberflächeneigenschaftenvonSiliziumdioxid-Schmelzen In der vorliegenden Arbeit werdenMolekulardynamik-Computersimulationenzur Untersuchung der statischen und dynamischenOberflächeneigenschafteneiner Siliziumdioxid (SiO$_2$)-Schmelze durchgeführt.Als Modellpotential verwenden wirein in der Literatur als BKS-Potential bezeichnetesPaarpotential.Wir betrachten in dieser Arbeit zwei Systemgeometrien: zumeinenSysteme aus 432, 1536 und 4608 Atomen ohne periodischeRandbedingungen(Tropfen), zum anderen ein System aus 1152 Atomen mitperiodischen Randbedingungen in zwei Richtungen (dünnerFilm).Für beide Geometrien finden wir im Inneren der Systemekonstante Dichten.Direktan der Oberfläche halten sich ausschließlich Sauerstoffatomeauf.Die Strukturan der Oberfläche erscheint weniger ausgeprägt mit mehrDefekten, als im Inneren des Systems.Es erweist sich,daß viele Eigenschaften statischer Größen, die wir an derOberfläche im Vergleich zum Inneren finden, aufdas Vorhandensein von Zweierringen zurückzuführen sind.Bei der Betrachtung der dynamischen Größen finden wir eineerhöhteBeweglichkeit der Atome an der Oberfläche gegenüber demSysteminneren.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this PhD thesis was to study at a microscopic level different liquid crystal (LC) systems, in order to determine their physical properties, resorting to two distinct methodologies, one involving computer simulations, and the other spectroscopic techniques, in particular electron spin resonance (ESR) spectroscopy. By means of the computer simulation approach we tried to demonstrate this tool effectiveness for calculating anisotropic static properties of a LC material, as well as for predicting its behaviour and features. This required the development and adoption of suitable molecular models based on a convenient intermolecular potentials reflecting the essential molecular features of the investigated system. In particular, concerning the simulation approach, we have set up models for discotic liquid crystal dimers and we have studied, by means of Monte Carlo simulations, their phase behaviour and self­-assembling properties, with respect to the simple monomer case. Each discotic dimer is described by two oblate Gay­Berne ellipsoids connected by a flexible spacer, modelled by a harmonic "spring" of three different lengths. In particular we investigated the effects of dimerization on the transition temperatures, as well as on the characteristics of molecular aggregation displayed and the relative orientational order. Moving to the experimental results, among the many experimental techniques that are typically employed to evaluate LC system distinctive features, ESR has proved to be a powerful tool in microscopic scale investigation of the properties, structure, order and dynamics of these materials. We have taken advantage of the high sensitivity of the ESR spin probe technique to investigate increasingly complex LC systems ranging from devices constituted by a polymer matrix in which LC molecules are confined in shape of nano- droplets, as well as biaxial liquid crystalline elastomers, and dimers whose monomeric units or lateral groups are constituted by rod-like mesogens (11BCB). Reflection-mode holographic-polymer dispersed liquid crystals (H-PDLCs) are devices in which LCs are confined into nanosized (50­-300 nm) droplets, arranged in layers which alternate with polymer layers, forming a diffraction grating. We have determined the configuration of the LC local director and we have derived a model of the nanodroplet organization inside the layers. Resorting also to additional information on the nanodroplet size and shape distribution provided by SEM images of the H-PDLC cross-section, the observed director configuration has been modeled as a bidimensional distribution of elongated nanodroplets whose long axis is, on the average, parallel to the layers and whose internal director configuration is a uniaxial quasi- monodomain aligned along the nanodroplet long axis. The results suggest that the molecular organization is dictated mainly by the confinement, explaining, at least in part, the need for switching voltages significantly higher and the observed faster turn-off times in H-PDLCs compared to standard PDLC devices. Liquid crystal elastomers consist in cross-linked polymers, in which mesogens represent the monomers constituting the main chain or the laterally attached side groups. They bring together three important aspects: orientational order in amorphous soft materials, responsive molecular shape and quenched topological constraints. In biaxial nematic liquid crystalline elastomers (BLCEs), two orthogonal directions, rather than the one of normal uniaxial nematic, can be controlled, greatly enhancing their potential value for applications as novel actuators. Two versions of a side-chain BLCEs were characterized: side­-on and end­-on. Many tests have been carried out on both types of LCE, the main features detected being the lack of a significant dynamical behaviour, together with a strong permanent alignment along the principal director, and the confirmation of the transition temperatures already determined by DSC measurements. The end­-on sample demonstrates a less hindered rotation of the side group mesogenic units and a greater freedom of alignment to the magnetic field, as already shown by previous NMR studies. Biaxial nematic ESR static spectra were also obtained on the basis of Molecular Dynamics generated biaxial configurations, to be compared to the experimentally determined ones, as a mean to establish a possible relation between biaxiality and the spectral features. This provides a concrete example of the advantages of combining the computer simulation and spectroscopic approaches. Finally, the dimer α,ω-bis(4'-cyanobiphenyl-4-yl)undecane (11BCB), synthesized in the "quest" for the biaxial nematic phase has been analysed. Its importance lies in the dimer significance as building blocks in the development of new materials to be employed in innovative technological applications, such as faster switching displays, resorting to the easier aligning ability of the secondary director in biaxial phases. A preliminary series of tests were performed revealing the population of mesogenic molecules as divided into two groups: one of elongated straightened conformers sharing a common director, and one of bent molecules, which display no order, being equally distributed in the three dimensions. Employing this model, the calculated values show a consistent trend, confirming at the same time the transition temperatures indicated by the DSC measurements, together with rotational diffusion tensor values that follow closely those of the constituting monomer 5CB.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die Arbeit beschreibt Untersuchungen zum nichtphoto- chemischen Lochbrennen, das bei 1.4 Kelvin in Form von rein lichtinduzierten Frequenzsprüngen einzelner in p-Terphenyleingebetteter Terrylenmoleküle beobachtet werden kann. Dabei zeigen alle Chromophore aus der X1-Einbaulage ein exzellent reproduzierbares Verhalten, sowohl im bistabilen primären Photozyklus wie auch in dem daran angegliederten sekundärenPhotozyklus, welcher aus drei weiteren spektralen Positionen besteht. Aus den Ergebnissen der nach der genauen Charakterisierung dieser Eigenschaft des Systems durchgeführten Experimente - Fluoreszenzspektroskopie der Photoprodukte, Stark-Effekt-Messungen und Polarisationsmodulation - wird ein Modell für die den lichtinduzierten Änderungen der Absorptionsfrequenzzugrundeliegenden Konformationsänderungender Wirt/Gast- Struktur abgeleitet und diskutiert. Die mittlerweile verfügbaren Ergebnisse von diesbezüglichen molekular- dynamischen Simulationen einer Theoriegruppe ausBordeaux, die alle grundlegenden Annahmen dieses Modellsbestätigen und eine noch genauere mikroskopische Beschreibung des Systems liefern, werden zur Abrundung der Darstellung ebenfalls vorgestellt. Außerdem geht die Dissertation auf die durchgeführten Einzelmolekül- untersuchungen an Terrylen in p-Terphenyl bei Raumtemperatur ein und stellt das im Rahmen der Arbeit aufgebaute temperaturvariable laserscannende Konfokalmikroskop im Detail vor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die innerhalb dieser Arbeit mittels moderner Festkörper-NMR-Methoden untersuchte molekulare Dynamik in Poly(methacrylat)-Schmelzen und Polyphenylen-Dendrimeren ist durch eine bemerkenswerte Anisotropie gekennzeichnet.Die Anisotropie der molekularen Dynamik zeigt sich in geschmolzenen, ataktischen und isotaktischen Poly(ethylmethacrylaten) (PEMA) durch die Zeitskalenseparation der segmentellen alpha-Relaxation von einem etwa zwei Größenordnungen langsameren Relaxationsprozeß, welcher die Isotropisierung der Polymerhauptkette wiedergibt. Die Isotropisierungsdynamik der Polymerhauptkette wird - mit Ausnahme von PMMA - durch eine universelle, nicht-korrelationszeitenverteilte Relaxationsmode der Poly(methacrylate) quantifiziert, deren Temperaturabhängigkeit durch einen einheitlichen WLF-Parametersatz beschrieben werden kann. Geometrisch läßt sich die Isotropisierung der Hauptkette durch Sprungprozesse beliebiger Amplitude von Kettenstücken mit gestreckter all-trans-Konformation interpretieren. Die Kette zeigt eine außergewöhnliche konformative Stabilität. WAXS-Messungen deuten für PEMA und seine höheren Homologen die Existenz einer Schichtstruktur an, in der sich die steifen, polaren Hauptketten lokal in Monolagen anordnen, welche durch Bereiche zusammengelagerter Seitengruppen getrennt sind. Die Festkörper-NMR-Untersuchungen an Polyphenylen-Dendrimeren bringen zwei zentrale Aspekte in der wechselseitigen Beziehung von Struktur und Dynamik hervor. Zum einen ist die beobachtete molekulare Dynamik auf lokale Reorientierungen einzelner, terminaler Phenylringe um definierte Achsen beschränkt. Polyphenylen-Dendrimermoleküle sind unter diesen Bewegungen formstabil. Zum anderen können sowohl schnelle, als auch langsame Phenylreorientierungen nachgewiesen werden, wobei jeweils die intramolekulare Packungsdichte der Phenylringe das dynamische Verhalten der Polyphenylen-Dendrimere kontrolliert.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

GERMAN:Im Rahmen der vorliegenden Arbeit soll der Einfluß einerräumlichen Beschränkung auf die Dynamik einer unterkühltenFlüssigkeit charakterisiert werden. Insbesondere sollgeklärt werden, welche Rolle die Kooperativität derTeilchenbewegung bei niedrigen Temperaturen spielt. Hierzuuntersuchen wir mit Hilfe einer Molekulardynamik-Computersimulation die dynamischen Eigenschaften eineseinfachen Modellglasbildners, einer binäre Lennard-Jones-Flüssigkeit, für Systeme mit unterschiedlichen Geometrienund Wandarten. Durch geschickte Wahl der Wandpotentiale konnte erreichtwerden, daß die Struktur der Flüssigkeit mit der im Bulknahezu identisch ist.In Filmen mit glatten Wänden beobachtet man, daß dieDynamik der Flüssigkeit in der Nähe der Wand starkbeschleunigt ist und sich diese veränderte Dynamik bis weitin den Film ausbreitet. Den umgekehrten Effekt erhält man,wenn man eine strukturierte, rauhe Wand verwendet, in derenNähe die Dynamik stark verlangsamt ist.Die kontinuierliche Verlangsamung bzw. Beschleunigung derDynamik vom Verhalten an der Oberfläche zum Bulkverhaltenin genügend großem Abstand zur Wand können wirphänomenologisch beschreiben. Hieraus kann mancharakteristische dynamische Längenskalen ablesen, die mitsinkender Temperatur kontinuierlich anwachsen, d.h. derBereich, in dem die Existenz der Wand einen (indirekten)Einfluß auf die Dynamik eines Flüssigkeitsteilchens hat,breitet sich immer weiter aus. Man kann daher vonBereichen kooperativer Bewegung sprechen, die mit sinkenderTemperatur anwachsen.Unsere Untersuchungen von Röhren zeigen, daß aufgrund desstärkeren Einflusses der Wände die beobachteten Effektegrößer sind als in Filmgeometrie. Bei Reduzierung derSystemgröße zeigen sich immer größere Unterschiede zumBulkverhalten.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wurde die Druckabhängigkeit der molekularen Dynamik mittels 2H-NMR und Viskositätsmessungen untersucht. Für die Messungen wurde der niedermolekulare organische Glasbildner ortho-Terphenyl (OTP) ausgewählt, da dieser aufgrund einer Vielzahl vorliegender Arbeiten als Modellsubstanz angesehen werden kann. Daneben wurden auch Messungen an Salol durchgeführt.Die Untersuchungen erstreckten sich über einen weiten Druck- und Temperaturbereich ausgehend von der Schmelze bis weit in die unterkühlte Flüssigkeit. Dieser Bereich wurde aufgrund experimenteller Voraussetzungen immer durch eine Druckerhöhung erreicht.Beide Substanzen zeigten druckabhängig ein Verhalten, das dem der Temperaturvariation bei Normaldruck sehr ähnelt. Auf einer Zeitskala der molekularen Dynamik von 10E-9 s bis zu 10E+2 s wurde daher am Beispiel von OTP ein Druck-Temperatur-Zeit-Superpositionsprinzip diskutiert. Zudem konnte eine Temperatur-Dichte-Skalierung mit rho T-1/4 erfolgreich durchgeführt werden. Dies entspricht einem rein repulsiven Potentialverlauf mit rho -12±3 .Zur Entscheidung, ob die Verteilungsbreiten der mittleren Rotationskorrelationszeiten durch Druckvariation beeinflußt werden, wurden auch Ergebnisse anderer experimenteller Methoden herangezogen. Unter Hinzuziehung aller Meßergebnisse kann sowohl eine Temperatur- als auch Druckabhängigkeit der Verteilungsbreite bestätigt werden. Zur Auswertung von Viskositätsdaten wurde ein Verfahren vorgestellt, das eine quantitative Aussage über den Fragilitätsindex von unterkühlten Flüssigkeiten auch dann zuläßt, wenn die Messungen nicht bis zur Glasübergangstemperatur Tg durchgeführt werden. Die Auswertung der druckabhängigen Viskositätsdaten von OTP und Salol zeigt einen sehr differenzierten druckabhängigen Verlauf des Fragilitätsindexes für beide Glasbildner. OTP zeigt zunächst eine leichte Abnahme und danach wieder eine Zunahme des Fragilitätsindexes, dieses Ergebnis wird auch von Simulationsdaten, die der Literatur entnommen wurden, unterstützt. Salol hingegen zeigt zunächst eine deutliche Zunahme und danach eine Abnahme des Fragilitätsindexes. Das unterschiedliche Verhalten der beiden Glasbildner mit ähnlichem Fragilitätsindex bei Normaldruck wird auf die Wasserstoffbrückenbindungen innerhalb von Salol zurückgeführt.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mit Hilfe von Molekulardynamik-Computersimulationen werdenin dieser Arbeit die Struktur und Dynamik von Gläsern undSchmelzen der Systeme 'NSx'=(Na2O)(xSiO2), mit x=2,3,5, und'AS2'=(Al2O3)(2SiO2) untersucht. Zur Beschreibung dermikroskopischen Wechselwirkungen dient ein Modellpotenzial,das auf einem effektiven Paarpotenzial aus der Literaturaufbaut. Simuliert wurden Teilchentrajektorien über mehrereNanosekunden im Bereich 6100 K >= T >= 2100 K sowie dieGlasstruktur bei 100 K (NSx) bzw. 300 K (AS2). Das Aufbrechen der tetraedrischen Netzwerkstruktur durch denNetzwerkmodifikator Na2O führt zur Ausbildung einerzusätzlichen Struktur auf intermediären Längenskalen, diebei allen Systemen NSx etwa dem Abstand übernächster Na-bzw. Si-Nachbarn eines Na-Atoms entspricht. Die diffusiveDynamik ist in allen Systeme NSx bis zu drei Größenordnungenschneller als in SiO2 . Sie nimmt mit wachsenderNa-Konzentration zu. Die Na-Diffusion zeigtArrhenius-Verhalten; hierbei vollführen die Na-Atome einaktiviertes Hüpfen durch eine erstarrte Si-O-Matrix. DieZustandsdichten werden bis ca. 20 THz durch dominanteNa-Moden bestimmt. Bei hohen Frequenzen weichen die für SiO2 typischen intratetraedrischen Si-O-Schwingungsmodenauf.Im Gegensatz zu Na2O wird Al2O3 in die tetraedrischeNetzwerkstruktur eingebunden. AS2 zeigt eine überwiegend ausAlO4- und SiO4-Tetraedern verknüpfte Polyederstruktur, beider sich die AlO4-Tetraeder lokal anders anordnen als dieSiO4-Tetraeder, um Ladungsausgleich zu gewährleisten. Esbilden sich typische 3(Si,Al)O4-Bausteine ('3-Cluster'). Sie führen auf intermediären Längenskalen zur Ausbildungeines Al-reichen perkolierenden Netzwerks, das dieSiO4-Struktur durchdringt. Im Vergleich zu SiO2 erhöht sichdie diffusive Dynamik aller Komponenten in AS2 um ca. zweiGrößenordnungen. Die intratetraedrischenAl-O-Steckschwingungsmoden sind wesentlich weicher als die typischen intratetraedrischen Si-O-Moden des SiO2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the statics and dynamics of a glassy,non-entangled, short bead-spring polymer melt with moleculardynamics simulations. Temperature ranges from slightlyabove the mode-coupling critical temperature to the liquidregime where features of a glassy liquid are absent. Ouraim is to work out the polymer specific effects on therelaxation and particle correlation. We find the intra-chain static structure unaffected bytemperature, it depends only on the distance of monomersalong the backbone. In contrast, the distinct inter-chainstructure shows pronounced site-dependence effects at thelength-scales of the chain and the nearest neighbordistance. There, we also find the strongest temperaturedependence which drives the glass transition. Both the siteaveraged coupling of the monomer and center of mass (CM) andthe CM-CM coupling are weak and presumably not responsiblefor a peak in the coherent relaxation time at the chain'slength scale. Chains rather emerge as soft, easilyinterpenetrating objects. Three particle correlations arewell reproduced by the convolution approximation with theexception of model dependent deviations. In the spatially heterogeneous dynamics of our system weidentify highly mobile monomers which tend to follow eachother in one-dimensional paths forming ``strings''. Thesestrings have an exponential length distribution and aregenerally short compared to the chain length. Thus, arelaxation mechanism in which neighboring mobile monomersmove along the backbone of the chain seems unlikely.However, the correlation of bonded neighbors is enhanced. When liquids are confined between two surfaces in relativesliding motion kinetic friction is observed. We study ageneric model setup by molecular dynamics simulations for awide range of sliding speeds, temperatures, loads, andlubricant coverings for simple and molecular fluids. Instabilities in the particle trajectories are identified asthe origin of kinetic friction. They lead to high particlevelocities of fluid atoms which are gradually dissipatedresulting in a friction force. In commensurate systemsfluid atoms follow continuous trajectories for sub-monolayercoverings and consequently, friction vanishes at low slidingspeeds. For incommensurate systems the velocity probabilitydistribution exhibits approximately exponential tails. Weconnect this velocity distribution to the kinetic frictionforce which reaches a constant value at low sliding speeds. This approach agrees well with the friction obtaineddirectly from simulations and explains Amontons' law on themicroscopic level. Molecular bonds in commensurate systemslead to incommensurate behavior, but do not change thequalitative behavior of incommensurate systems. However,crossed chains form stable load bearing asperities whichstrongly increase friction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The subject of this thesis are the interactions between nucleosome core particles (NCPs). NCPs are the primary storage units of DNA in eucaryotic cells. Each NCP consists of a core of eight histone proteins and a strand of DNA, which is wrapped around about two times. Each histone protein has a terminal tail passing over and between the superhelix of the wrapped DNA. Special emphasis was placed on the role of the histone tails, since experimental ndings suggest that the tails have a great in uence on the mutual attraction of the NCPs. In those experiments Mangenot et al. observe a dramatic change in the con guration of the tails, which is accompanied by evidence of mutual attraction between NCPs, when a certain salt concentration is reached. Existing models used in the theoretical approaches and in simulations focus on the description of the histone core and the wrapped DNA, but neglect the histone tails. We introduce the multi chain complex as a new simulation model. Here the histone core and the wrapping DNA are modelled via a charged sphere, while the histone tails are represented by oppositely charged chains grafted on the sphere surface. We start by investigating the parameter space describing a single NCP. The Debye-Huckel potential is used to model the electrostatic interactions and to determine the e ective charge of the NCP core. This value is subsequently used for a study of the pairinteraction of two NCPs via an extensive Molecular Dynamics study. The monomer distribution of the full chain model is investigated. The existence of tail bridges between the cores is demonstrated. Finally, by discriminating between bridging and non-bridging con gurations, we can show that the effect of tail bridging between the spheres does indeed account for the observed attraction. The full chain model can serve as a model to study the acetylation of the histone tails of the nucleosome. The reduction of the charge fraction of the tails, that corresponds to the process of acetylation, leads to a reduction or even the disappearance of the attraction. A recent MC study links this e ect to the unfolding of the chromatin ber in the case of acetylated histone tails. In this case the acetylation of the histone tails leads to the formation of heterochromatin, and one could understand how larger regions of the genetic information could be inactivated through this mechanism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Homo-oligofluorenes (OFn), polyfluorenes (PF2/6) and oligofluorenes with one fluorenenone group in the center (OFnK) were synthesized. They were used as model compounds to understand of the structure-property relationships of polyfluorenes and the origin of the green emission in the photoluminescence (after photooxidation of the PFs) and the electroluminescence (EL) spectra. The electronic, electrochemical properties, thermal behavior, supramolecular self-assembly, and photophysical properties of OFn, PF2/6 and OFnK were investigated. Oligofluorenes with 2-ethylhexyl side chain (OF2-OF7) from the dimer up to the heptamer were prepared by a series of stepwise transition metal mediated Suzuki and Yamamoto coupling reactions. Polyfluorene was synthesized by Yamamoto coupling of 2,7-dibromo-9,9-bis(2-ethylhexyl)fluorene. Oligofluorenes with one fluorenone group in the center (OF3K, OF5K, OF7K) were prepared by Suzuki coupling between the monoboronic fluorenyl monomer, dimer, trimer and 2, 7-dibromofluorenone. The electrochemical and electronic properties of homo-oligofluorenes (OFn) were systematically studied by several combined techniques such as cyclic voltammetry, differential pulse voltammetry, UV-vis absorption spectroscopy, steady and time-resolved fluorescence spectroscopy. It was found that the oligofluorenes behave like classical conjugated oligomers, i.e., with the increase of the chain-length, the corresponding oxidation potential, the absorption and emission maximum, ionization potential, electron affinity, band gap and the photoluminescence lifetime displayed a very good linear relation with the reciprocal number of the fluorene units (1/n). The extrapolation of these linear relations to infinite chain length predicted the electrochemical and electronic properties of the corresponding polyfluorenes. The thermal behavior, single-crystal structure and supramolecular packing, alignment properties, and molecular dynamics of the homo-oligofluorenes (OFn) up to the polymer were studied using techniques such as TGA, DSC, WAXS, POM and DS. The OFn from tetramer to heptamer show a smectic liquid crystalline phase with clearly defined isotropization temperature. The oligomers do show a glass transition which exhibits n-1 dependence and allows extrapolation to a hypothetical glass transition of the polymer at around 64 °C. A smectic packing and helix-like conformation for the oligofluorenes from tetramer to heptamer was supported by WAXS experiments, simulation, and single-crystal structure of some oligofluorene derivatives. Oligofluorenes were aligned more easily than the corresponding polymer, and the alignability increased with the molecular length from tetramer to heptamer. The molecular dynamics in a series of oligofluorenes up to the polymer was studied using dielectric spectroscopy. The photophysical properties of OFn and PF2/6 were investigated by the steady-state spectra (UV-vis absorption and fluorescence spectra) and time-resolved fluorescence spectra both in solution and thin film. The time-resolved fluorescence spectra of the oligofluorenes were measured by streak camera and gate detection technique. The lifetime of the oligofluorenes decreased with the extension of the chain-length. No green emission was observed in CW, prompt and delayed fluorescence for oligofluorenes in m-THF and film at RT and 77K. Phosphorescence was observed for oligofluorenes in frozen dilute m-THF solution at 77K and its lifetime increased with length of oligofluorenes. A linear relation was obtained for triplet energy and singlet energy as a function of the reciprocal degree of polymerization, and the singlet-triplet energy gap (S1-T1) was found to decrease with the increase of degree of polymerization. Oligofluorenes with one fluorenone unit at the center were used as model compounds to understand the origin of the low-energy (“green”) emission band in the photoluminescence and electroluminescence spectra of polyfluorenes. Their electrochemical properties were investigated by CV, and the ionization potential (Ip) and electron affinity (Ea) were calculated from the onset of oxidation and reduction of OFnK. The photophysical properties of OFnK were studied in dilute solution and thin film by steady-state spectra and time-resolved fluorescence spectra. A strong green emission accompanied with a weak blue emission were obtained in solution and only green emission was observed on film. The strong green emission of OFnK suggested that rapid energy transfer takes place from higher energy sites (fluorene segments) to lower energy sites (fluorenone unit) prior to the radiative decay of the excited species. The fluorescence spectra of OFnK also showed solvatochromism. Monoexponential decay behaviour was observed by time-resolved fluorescence measurements. In addition, the site-selective excitation and concentration dependence of the fluorescence spectra were investigated. The ratio of green and blue emission band intensities increases with the increase of the concentration. The observed strong concentration dependence of the green emission band in solution suggests that increased interchain interactions among the fluorenone-containing oligofluorene chain enhanced the emission from the fluorenone defects at higher concentration. On the other hand, the mono-exponential decay behaviour and power dependence were not influenced significantly by the concentration. We have ruled out the possibility that the green emission band originates from aggregates or excimer formation. Energy transfer was further investigated using a model system of a polyfluorene doped by OFnK. Förster-type energy transfer took place from PF2/6 to OFnK, and the energy transfer efficiency increased with increasing of the concentration of OFnK. Efficient funneling of excitation energy from the high-energy fluorene segments to the low-energy fluorenone defects results from energy migration by hopping of excitations along a single polymer chain until they are trapped on the fluorenone defects on that chain or transferred onto neighbouring chains by Förster-type interchain energy transfer process. These results imply that the red-shifted emission in polyfluorenes can originate from (usually undesirable) keto groups at the bridging carbon atoms-especially if the samples have been subject to photo- or electro-oxidation or if fluorenone units are present due to an improper purification of the monomers prior to polymerization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In dieser Arbeit werden Molekulardynamik-Computersimulationen zur Untersuchung der statischen und dynamischen Eigenschaften einer amorph/kristallinen Siliziumdioxid(SiO2)-Grenzschicht durchgefuehrt.Die Grenzflaeche wird von der [100]-Ebene des beta-Kristobalit-Kristalls und der fluessigen SiO2-Phase gebildet und in einem Temperaturbereich zwischen 2900K und 3100K im Zustand eines metastabilen Gleichgewichts untersucht. Als Modellpotential zur Beschreibung der mikroskopischen Wechselwirkungen zwischen den Teilchen wird ein einfaches Paarpotential aus der Literatur verwendet, das sowohl die Struktur der kristallinen Phase als auch die der fluessigen Phase gut reproduziert. Bezogen auf die Dichte und die potentielle Energie der Teilchen erstreckt sich der Uebergang von der fluessigen in die kristalline Phase ueber 3-5 Atomlagen. Ein Layering-Effekt der Dichte in der fluessigen Phase in der Naehe der Grenzschicht wird nicht beobachtet. Der Einfluss der Grenzschicht auf statische Groessen, welche das System auf einer mittelreichweitigen Laengenskala beschreiben (z. B. Koordinationszahlverteilung und Ringverteilung) reicht im Vergleich dazu weiter in die fluessige Phase hinein und manifestiert sich in Defektstrukturen, wie z. B. der Erhoehung der Wahrscheinlichkeit fuer das Auftreten von 5-fach koordiniertem Silizium und der vermehrten Bildung von 2er-Ringen in der Fluessigkeit. Dies beguenstigt das Aufbrechen und Umklappen von Si-O-Bindungen und fuehrt zu einer Beschleunigung der Dynamik und einer Erhoehung der Diffusionsgeschwindigkeit in der Fluessigkeit. Im weiteren wird die Hochfrequenzdynamik der reinen SiO2-Fluessigkeit untersucht. Dazu berechnen wir die vibratorische Zustandsdichte in harmonischer Naeherung aus der inhaerenten Struktur. Wir finden einen stark ausgepraegten Peak bei einer Frequenz von 0.6 THz. Dieser Peak kann der niederenergetischsten transversalen akustischen Mode zugeordnet werden, die auch als Scherschwingung des Systems direkt sichtbar ist.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The fundamental aim in our investigation of the interaction of a polymer film with a nanoparticle is the extraction of information on the dynamics of the liquid using a single tracking particle. In this work two theoretical methods were used: one passive, where the motion of the particle measures the dynamics of the liquid, one active, where perturbations in the system are introduced through the particle. In the first part of this investigation a thin polymeric film on a substrate is studied using molecular dynamics simulations. The polymer is modeled via a 'bead spring' model. The particle is spheric and non structured and is able to interact with the monomers via a Lennard Jones potential. The system is micro-canonical and simulations were performed for average temperatures between the glass transition temperature of the film and its dewetting temperature. It is shown that the stability of the nanoparticle on the polymer film in the absence of gravity depends strongly on the form of the chosen interaction potential between nanoparticle and polymer. The relative position of the tracking particle to the liquid vapor interface of the polymer film shows the glass transition of the latter. The velocity correlation function and the mean square displacement of the particle has shown that it is caged when the temperature is close to the glass transition temperature. The analysis of the dynamics at long times shows the coupling of the nanoparticle to the center of mass of the polymer chains. The use of the Stokes-Einstein formula, which relates the diffusion coefficient to the viscosity, permits to use the nanoparticle as a probe for the determination of the bulk viscosity of the melt, the so called 'microrheology'. It is shown that for low frequencies the result obtained using microrheology coincides with the results of the Rouse model applied to the polymer dynamics. In the second part of this investigation the equations of Linear Hydrodynamics are solved for a nanoparticle oscillating above the film. It is shown that compressible liquids have mechanical response to external perturbations induced with the nanoparticle. These solutions show strong velocity and pressure profiles of the liquid near the interface, as well as a mechanical response of the liquid-vapor interface. The results obtained with this calculations can be employed for the interpretation of experimental results of non contact AFM microscopy

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wird mittels Molekulardynamik(MD)-Computersimulationen die Dynamik von verschiedenen Alkalisilikaten in der Schmelze und im Glas untersucht. Es ist bekannt, daß diese Systeme ionenleitend sind, was auf eine hohe Mobilität der Alkaliionen im Vergleich zu den glasbildenden Komponenten Si und O zurückzuführen ist. Im Mittelpunkt des Interesses steht der sog. Mischalkalieffekt (MAE), der in ternären Mischungen aus Siliziumdioxid mit zwei Alkalioxiden auftritt. Gegenüber Mischungen mit nur einer Alkaliionensorte weisen letztere Systeme eine signifikante Verlangsamung der Alkaliionendiffusion auf. Zunächst werden zwei binäre Alkalisilikate simuliert, nämlich Lithiumdisilikat (LS2) und Kaliumdisilikat (KS2). Die Simulationen zeigen, daß der Ursprung der hohen Mobilität der Alkaliionen in der Struktur begründet ist. KS2 und LS2 weisen auf intermediären Längenskalen Ordnung auf, die in partiellen statischen Strukturfaktoren durch Prepeaks reflektiert ist. Die den Prepeaks zugrundeliegende Struktur erklärt sich durch perkolierende Netzwerke aus alkalioxidreichen Kanälen, die als Diffusionskanäle für die mobilen Alkaliionen fungieren. In diesen Kanälen bewegen sich die Ionen mittels Sprüngen (Hopping) zwischen ausgezeichneten Plätzen. In der Simulation beobachtet man für die hohen Temperaturen (4000K>=1500K) eine ähnliche Aktivierungsenergie wie im Experiment. Im Experiment findet allerdings unterhalb von ca.1200K ein Crossover in ein Arrheniusverhalten mit höherer Aktivierungsenergie statt, welches von der Simulation nicht nachvollzogen wird. Das kann mit der in der Simulation nicht im Gleichgewicht befindlichen Si-O-Matrix erklärt werden, bei der Alterungseffekte beobachtet werden. Am stärksten ist der MAE für eine Alkalikomponente, wenn deren Konzentrationsanteil in einem ternären Mischalkalisystem gegen 0 geht. Daher wird ein LS2-System untersucht, in dem ein Li-Ion gegen ein K-Ion getauscht wird. Der Einfluß des K-Ions ist sowohl lokal in den charakteristischen Abständen zu den ersten nächsten Nachbarn (NN) zu sehen, als auch in der ortsaufgelösten Koordinationszahlverteilung bis zu Längenskalen von ca. 8,5 Angstrom. Die Untersuchung der Dynamik des eingesetzten K-Ions zeigt, daß die Sprungwahrscheinlichkeit nicht mit der Lokalisierung, einem Maß für die Bewegung eines Teilchens um seine Ruheposition, korreliert ist, aber daß eine chemische Umgebung mit wenig Li- und vielen O-NN oder vielen Li- und wenig O-NN ein Sprungereignis begünstigt. Zuletzt wird ein ternäres Alkalisilikat (LKS2) untersucht, dessen Struktur alle charakteristischen Längenskalen von LS2 und KS2 aufweist. Es stellt sich also eine komplexe Struktur mit zwei perkolierenden Subnetzwerken für Alkaliionen ein. Die Untersuchung der Dynamik zeigt eine geringe Wahrscheinlichkeit dafür auf, daß Ionen in ein Subnetzwerk andersnamiger Ionen springen. Auch kann gezeigt werden, daß das Modellpotential den MAE reproduzieren kann, daß also die Diffusionskonstanten in LKS2 bei bis zu einer Größenordnung langsamer sind als in KS2 bzw. LS2. Der beobachtete Effekt stellt sich zudem vom funktionalen Verlauf her so dar, wie er beim MAE erwartet wird. Es wurde auch festgestellt, daß trotz der zeitlichen Verzögerung in den dynamischen Größen die Anzahl der Sprünge pro Zeit nicht geringer ist und daß für niedrige Temperaturen (d.h.im Glas) Sprünge auf den Nachbarplatz mit anschließendem Rücksprung auf die vorherige Position deutlich wahrscheinlicher sind als bei hohen Temperaturen (also in der Schmelze). Die vorliegenden Resultate geben Aufschluß über die Details der Mechanismen mikroskopischer Ionenleitung in binären und ternären Alkalisilikaten sowie dem MAE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die FT-Rheologie wird zur Unterscheidung verschiedener Kamm-Topologien in Polystyrollösungen und –schmelzen angewendet. Die Polystyrole werden in Abhängigkeit der Deborahzahl De unter LAOS-Bedingungen vermessen. Die Meßergebnisse zeigen, daß der Schritt von wohldefinierten Systemen (lineare Ketten, Sterne) zu solchen mit statistischer Verteilung wie in Kämmen zu großen Veränderungen sowohl im linearen als auch im nichtlinearen Bereich der rheologischen Messungen führt. Sowohl die Masterkurven als auch die Intenstiäten I3/1 und Phasen Phi3 der Nichtlinearitäten der einzelnen Proben weisen jeweils deutliche Unterschiede untereinander auf. Diese sind durch die bisherigen Ergebnisse noch nicht vollständig mit topologischen Merkmalen in Verbindung zu bringen. Die Messungen wurden mit dem von McLeish eingeführten Pom-pom Modell und daraus weiterentwickelten double convected-Pom-pom Modell (DCPP) simuliert und lieferten gute Übereinstimmung sowie auch Vorhersagen über den experimentell nicht mehr zugänglichen Bereich. Zur Untersuchung des Einflusses von mechanischer Scherung auf die lokale, molekulare Dynamik wird das LAOS-Experiment in situ mit dielektrischer Spektroskopie kombiniert. Dazu wurde eine Apparatur entwickelt, die das hochsensitive ARES-Rheometer mit dem hochauflösenden dielektrischen ALPHA-Analyzer verbindet. Mit dieser Apparatur wurde das Typ-A Polymer 1,4-cis-Polyisopren, mit einem Dipolmoment entlang des Rückgrats, bei oszillatorischer Scherung unter gleichzeitiger Aufnahme eines dielektrischen Spektrums vermessen. Es konnte gezeigt werden, daß die oszillatorische Verscherung weder die charakteristische Relaxationszeit noch die Form des Normal Mode Peaks beeinflußt, wohl aber die dielektrische Stärke Delta epsilon. Diese entspricht der Fläche unter dem e“-Peak und kann mit einer Debye- und einer Cole/Davidson-Funktion angepasst werden. Die Abnahme der dielektrischen Stärke mit zunehmender Scheramplitude kann mit der Orientierungsverteilung der End-zu-End-Vektoren in der Probe erklärt werden.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Germaniumdioxid (GeO2) ist ein Glasbildner, der wie das homologe SiO2 ein ungeordnetes tetraedrisches Netzwerk ausbildet. In dieser Arbeit werden mit Hilfe von Molekulardynamik-Computersimulationen die Struktur und Dynamik von GeO2 in Abhängigkeit von der Temperatur untersucht. Dazu werden sowohl Simulationen mit einem klassischen Paarpotentialmodell von Oeffner und Elliott als auch ab initio-Simulationen gemäß der Car-Parrinello-Molekulardynamik (CPMD), bei der elektronische Freiheitsgrade mittels Dichtefunktionaltheorie beschrieben werden, durchgeführt. In der klassischen Simulation werden dazu ein Temperaturen zwischen 6100 K und 2530 K betrachtet. Darüberhinaus ermöglichen Abkühlläufe auf T=300 K das Studium der Struktur des Glases. Zum Vergleich werden CPMD-Simulationen für kleinere Systeme mit 60 bzw. 120 Teilchen bei den Temperaturen 3760 K und 3000 K durchgeführt. In den klassischen Simulationen kann die im Experiment bis 1700 K nachgewiesene, im Vergleich zu SiO2 starke, Temperaturabhängigkeit der Dichte auch bei höheren Temperaturen beobachtet werden. Gute Übereinstimmungen der Simulationen mit experimentellen Daten zeigen sich bei der Untersuchung verschiedener struktureller Größen, wie z.B. Paarkorrelationsfunktionen, Winkelverteilungen, Koordinationszahlen und Strukturfaktoren. Es können leichte strukturelle Abweichungen der CPMD-Simulationen von den klassischen Simulationen aufgezeigt werden: 1. Die Paarabstände in CPMD sind durchweg etwas kleiner. 2. Es zeigt sich, daß die Bindungen in den ab initio-Simulationen weicher sind, was sich auch in einer etwas stärkeren Temperaturabhängigkeit der strukturellen Größen im Vergleich zu den klassischen Simulationen niederschlägt. 3. Für CPMD kann ein vermehrtes Auftreten von Dreierringstrukturen gezeigt werden. 4. In der CPMD werden temperaturabhängige Defektstrukturen in Form von Sauerstoffpaaren beobachtet, die vor allem bei 3760 K, kaum jedoch bei 3000 K auftreten. Alle strukturellen Unterschiede zwischen klassischer und CPMD-Simulation sind eindeutig nicht auf Finite-Size-Effekte aufgrund der kleinen Systemgrößen in den CPMD-Simulationen zurückzuführen, d.h. sie sind tatsächlich methodisch bedingt. Bei der Dynamik von GeO2 wird in den klassischen Simulationen ebenfalls eine gute Übereinstimmung mit experimentellen Daten beobachtet, was ein Vergleich der Diffusionskonstanten mit Viskositätsmessungen bei hohen Temperaturen belegt. Die Diffusionskonstanten zeigen teilweise ein verschiedenes Verhalten zum homologen SiO2. Sie folgen in GeO2 bei Temperaturen unter 3000 K einem Arrheniusgesetz mit einer deutlich niedrigeren Aktivierungsenergie. Darüberhinaus werden die Möglichkeiten der Parametrisierung eines neuen klassischen Paarpotentials mittels der Kräfte entlang der CPMD-Trajektorien untersucht. Es zeigt sich, daß derartige Parametrisierungen sehr stark von den gewählten Startparametern abhängen. Ferner führen sämtliche an die Schmelze parametrisierten Potentiale zu zu hohen Dichten im Vergleich zum Experiment. Zum einen liegt dies sehr wahrscheinlich daran,daß für das System GeO2 Kraftdaten allein nicht ausreichen, um grundlegende strukturelle Größen, wie z.B. Paarkorrelationen und Winkelverteilungen, der CPMD-Simulationen gut reproduzieren zu können. Zum anderen ist wohl die Beschreibung mittels Paarpotentialen nicht ausreichend und es ist erforderlich, Merkörperwechselwirkungen in Betracht zu ziehen.