948 resultados para Volume change
Resumo:
This work was focused on studies of the metal hydride materials having a potential in building hydrogen storage systems with high gravimetric and volumetric efficiencies of H storage and formed / decomposed with high rates of hydrogen exchange. In situ diffraction studies of the metal-hydrogen systems were explored as a valuable tool in probing both the mechanism of the phase-structural transformations and their kinetics. Two complementary techniques, namely Neutron Powder Diffraction (NPD) and Synchrotron X-ray diffraction (SR XRD) were utilised. High pressure in situ NPD studies were performed at D2 pressures reaching 1000 bar at the D1B diffractometer accommodated at Institute Laue Langevin, Grenoble. The data of the time resolved in situ SR XRD were collected at the Swiss Norwegian Beam Lines, ESRF, Grenoble in the pressure range up to 50 bar H2 at temperatures 20-400°C. The systems studied by NPD at high pressures included deuterated Al-modified Laves-type C15 ZrFe2-xAlx intermetallics with x = 0.02; 0.04 and 0.20 and the CeNi5-D2 system. D content, hysteresis of H uptake and release, unit cell expansion and stability of the hydrides systematically change with Al content. Deuteration exhibited a very fast kinetics; it resulted in increase of the unit cells volumes reaching 23.5 % for ZrFe1.98Al0.02D2.9(1) and associated with exclusive occupancy of the Zr2(Fe,Al)2 tetrahedra. For CeNi5 deuteration yielded a hexahydride CeNi5D6.2 (20°C, 776 bar D2) and was accompanied by a nearly isotropic volume expansion reaching 30.1% (∆a/a=10.0%; ∆c/c=7.5%). Deuterium atoms fill three different interstitial sites including Ce2Ni2, Ce2Ni3 and Ni4. Significant hysteresis was observed on the first absorption-desorption cycle. This hysteresis decreased on the absorption-desorption cycling. A different approach to the development of H storage systems is based on the hydrides of light elements, first of all the Mg-based ones. These systems were studied by SR XRD. Reactive ball milling in hydrogen (HRBM) allowed synthesis of the nanostructured Mg-based hydrides. The experimental parameters (PH2, T, energy of milling, ball / sample ratio and balls size), significantly influence rate of hydrogenation. The studies confirmed (a) a completeness of hydrogenation of Mg into MgH2; (b) indicated a partial transformation of the originally formed -MgH2 into a metastable -MgH2 (a ratio / was 3/1); (c) yielded the crystallite size for the main hydrogenation product, -MgH2, as close to 10 nm. Influence of the additives to Mg on the structure and hydrogen absorption/desorption properties and cycle behaviour of the composites was established and will be discussed in the paper.
Resumo:
Global climate change is one of the most significant environmental issues that can harm human development. One central issue for the building and construction industry to address global climate change is the development of a credible and meaningful way to measure greenhouse gas (GHG) emissions. While Publicly Available Specification (PAS) 2050, the first international GHG standard, has been proven to be successful in standardizing the quantification process, its contribution to the management of carbon labels for construction materials is limited. With the recent publication of ISO 14067: Greenhouse gases – carbon footprint of products – requirements and guidelines for quantification and communication in May 2013, it is necessary for the building and construction industry to understand the past, present and future of the carbon labelling practices for construction materials. A systematic review shows that international GHG standards have been evolving in terms of providing additional guidance on communication and comparison, as well as less flexibility on the use of carbon labels. At the same time, carbon labelling schemes have been evolving on standardization and benchmarking. In addition, future actions are needed in the aspect of raising consumer awareness, providing benchmarking, ensuring standardization and developing simulation technologies in order for carbon labelling schemes for construction materials to provide credible, accurate and transparent information on GHG emissions.
Resumo:
Based on a survey of climate change experts in different stakeholder groups and interviews with corporate climate change managers, this study provides insights into the gap between what information stakeholders expect and what Australian corporations disclose. This paper focuses on annual reports and sustainability reports with specific reference to the disclosure of climate change-related corporate governance practices. The findings culminate in the refinement of a best practice index for the disclosure of climate-change-related corporate governance practises. Interview results indicate that the low levels of disclosures made by Australian companies may be due to a number of factors. These include a potential expectations gap, the absence of pressure from powerful stakeholders, a concern for stakeholder information overload, the cost of providing information, limited perceived accountability for climate change, and preferring other media for disclosure.
Resumo:
Teachers are continually bombarded with change programs for improvements in areas such as literacy and numeracy, however; the focus is often on the program and not on results (Pertuzé, Calder, Greitzer & Lucas, 2010). When the inevitable failure follows (Fullan, 2005; Gross, Giacquinta & Bernstein, 1971)the school moves on to a new activities-based model.
Resumo:
Traditional approaches to nonmonotonic reasoning fail to satisfy a number of plausible axioms for belief revision and suffer from conceptual difficulties as well. Recent work on ranked preferential models (RPMs) promises to overcome some of these difficulties. Here we show that RPMs are not adequate to handle iterated belief change. Specifically, we show that RPMs do not always allow for the reversibility of belief change. This result indicates the need for numerical strengths of belief.
Resumo:
Introduction The consistency of measuring small field output factors is greatly increased by reporting the measured dosimetric field size of each factor, as opposed to simply stating the nominal field size [1] and therefore requires the measurement of cross-axis profiles in a water tank. However, this makes output factor measurements time consuming. This project establishes at which field size the accuracy of output factors are not affected by the use of potentially inaccurate nominal field sizes, which we believe establishes a practical working definition of a ‘small’ field. The physical components of the radiation beam that contribute to the rapid change in output factor at small field sizes are examined in detail. The physical interaction that dominates the cause of the rapid dose reduction is quantified, and leads to the establishment of a theoretical definition of a ‘small’ field. Methods Current recommendations suggest that radiation collimation systems and isocentre defining lasers should both be calibrated to permit a maximum positioning uncertainty of 1 mm [2]. The proposed practical definition for small field sizes is as follows: if the output factor changes by ±1.0 % given a change in either field size or detector position of up to ±1 mm then the field should be considered small. Monte Carlo modelling was used to simulate output factors of a 6 MV photon beam for square fields with side lengths from 4.0 to 20.0 mm in 1.0 mm increments. The dose was scored to a 0.5 mm wide and 2.0 mm deep cylindrical volume of water within a cubic water phantom, at a depth of 5 cm and SSD of 95 cm. The maximum difference due to a collimator error of ±1 mm was found by comparing the output factors of adjacent field sizes. The output factor simulations were repeated 1 mm off-axis to quantify the effect of detector misalignment. Further simulations separated the total output factor into collimator scatter factor and phantom scatter factor. The collimator scatter factor was further separated into primary source occlusion effects and ‘traditional’ effects (a combination of flattening filter and jaw scatter etc.). The phantom scatter was separated in photon scatter and electronic disequilibrium. Each of these factors was plotted as a function of field size in order to quantify how each affected the change in small field size. Results The use of our practical definition resulted in field sizes of 15 mm or less being characterised as ‘small’. The change in field size had a greater effect than that of detector misalignment. For field sizes of 12 mm or less, electronic disequilibrium was found to cause the largest change in dose to the central axis (d = 5 cm). Source occlusion also caused a large change in output factor for field sizes less than 8 mm. Discussion and conclusions The measurement of cross-axis profiles are only required for output factor measurements for field sizes of 15 mm or less (for a 6 MV beam on Varian iX linear accelerator). This is expected to be dependent on linear accelerator spot size and photon energy. While some electronic disequilibrium was shown to occur at field sizes as large as 30 mm (the ‘traditional’ definition of small field [3]), it has been shown that it does not cause a greater change than photon scatter until a field size of 12 mm, at which point it becomes by far the most dominant effect.
Resumo:
Introduction This study investigates uncertainties pertaining to the use of optically stimulated luminescence dosimeters (OSLDs) in radiotherapy dosimetry. The sensitivity of the luminescent material is related to the density of recombination centres [1], which is in the range of 1015–1016 cm-3. Because of this non-uniform distribution of traps in crystal growth the sensitivity varies substantially within a batch of dosimeters. However, a quantitative understanding of the relationship between the response of an OSLD and its sensitive volume has not yet been investigated or reported in literature. Methods In this work, OSLDs are scanned with a MicroCT scanner to determine potential sources for the variation in relative sensitivity across a selection of Landauer nanoDot dosimeters. Specifically, the correlation between a dosimeters relative sensitivity and the loading density of Al2O3:C powder was determined. Results When extrapolating the sensitive volume’s radiodensity from the CT data, it was shown that there is a non-uniform distribution incrystal growth as illustrated in Fig. 1. A plot of voxel count versus the element-specific correction factor is shown in Fig. 2 where each point represents a single OSLD. A line was fitted which has an R2-value of 0.69 and a P-value of 8.21 9 10-19. This data shows that the response of a dosimeter decreases proportionally with sensitive volume. Extrapolating from this data, a quantitative relationship between response and sensitive volume was roughly determined for this batch of dosimeters. A change in volume of 1.176 9 10-5 cm3 corresponds to a 1 % change in response. In other words, a 0.05 % change in the nominal volume of the chip would result in a 1 % change in response. Discussion and conclusions This work demonstrated that the amount of sensitive material is approximately linked to the total correction factor. Furthermore, the ‘true’ volume of an OSLD’s sensitive material is, on average, 17.90 % less than that which has been reported in literature, mainly due to the presence of air cavities in the material’s structure. Finally, the potential effects of the inaccuracy of Al2O3:C deposition increases with decreasing chip size. If a luminescent dosimeter were manufactured with a smaller volume than currently employed using the same manufacturing protocol, the variation in response from chip to chip would more than likely exceed the current 5 % range.
Resumo:
The concept of dispositional resistance to change has been introduced in a series of exploratory and confirmatory analyses through which the validity of the Resistance to Change (RTC) Scale has been established (S. Oreg, 2003). However, the vast majority of participants with whom the scale was validated were from the United States. The purpose of the present work was to examine the meaningfulness of the construct and the validity of the scale across nations. Measurement equivalence analyses of data from 17 countries, representing 13 languages and 4 continents, confirmed the cross-national validity of the scale. Equivalent patterns of relationships between personal values and RTC across samples extend the nomological net of the construct and provide further evidence that dispositional resistance to change holds equivalent meanings across nations.
Resumo:
We explored whether teams develop shared perceptions regarding the quantity and quality of information and the extent of participation in decision making provided in an environment of continuous change. In addition, we examined whether change climate strength moderated relationships between change climate level and team outcomes. We examined relationships among aggregated change information and change participation and aggregated team outcomes, including two role stressors (i.e., role ambiguity and role overload) and two indicators of well-being (i.e., quality of worklife and distress). Questionnaires were distributed in an Australian law enforcement agency and data were used from 178 teams. Structural equation modelling analyses, controlling for a marker variable, were conducted to examine the main effects of aggregated change information and aggregated change participation on aggregated team outcomes. Results provided support for a model that included method effects due to a marker variable. In this model, change information climate was significantly negatively associated with role ambiguity, role overload, and distress, and significantly positively associated with quality of worklife. Change participation climate was significantly positively associated with quality of worklife. Change climate strength did not moderate relationships among change climate level and team outcomes.
Resumo:
The authors conducted a theoretical review of the change readiness literature and identified two major limitations with this work. First, while there is substantial agreement about the key cognitions that underlie change readiness, researchers have not examined the affective element of this attitude. Second, researchers have not adopted a multilevel perspective when considering change readiness. The authors address these limitations and argue that it is important to incorporate affect into definitions of the change readiness construct and also when measuring this construct. They then develop a multilevel framework that identifies the antecedents and consequences of individual, work group, and organizational change readiness. Next, the authors outline the theoretical processes that lead to the development of individual and collective change readiness. They then review theoretical and empirical evidence to identify the antecedents of change readiness at the three levels of analysis. Finally, the authors identify a number of suggestions to guide future research seeking to adopt a multilevel approach to change readiness.
Resumo:
Intended to bridge the gap between the latest methodological developments and cross-cultural research, this interdisciplinary resource presents the latest strategies for analyzing cross-cultural data. Techniques are demonstrated through the use of applications that employ cross national data sets such as the latest European Social Survey. With an emphasis on the generalized latent variable approach, internationally?prominent researchers from a variety of fields explain how the methods work, how to apply them, and how they relate to other methods presented in the book. Syntax and graphical and verbal explanations of the techniques are included. [from publisher's website]
Resumo:
Despite the importance of adaption and change for firm survival, the failure rate of organizational change efforts remains alarmingly high (Beer and Nohria, 2000; Kotter, 1995). In a recent global survey of over 3,000 executives,Meaney and Pung (2008) reported that two-thirds of executives indicated that their firm had failed to successfully implement organizational changes. Similarly, academic researchers have also concluded that difficulties in implementing and managing organizational change efforts often precipitate organizational crises (Probst and Raisch, 2005). As a result, attention has been directed to identify the factors that improve the likelihood of successfully implementing organizational change efforts. While there has been practitioner-oriented discussion around the pivotal role of workplace leaders in reducing resistance to change, only a limited number of empirical studies have examined relationships between leader behavior and employee change attitudes (e.g., Bommer, Rich, and Rubin, 2005; Herold, Caldwell, and Liu, 2008; Nemanich and Keller, 2007; Oreg and Berson, 2011). However...
Resumo:
Background Women with children are less likely to engage in adequate physical activity (PA) than women without children. This study aimed to evaluate the efficacy of two strategies for promoting increased PA among mothers of preschool-aged children, and to explore the mediators of any resulting change in PA behavior. Design Controlled intervention trial incorporating repeated data collection from 554 women, randomized to one of three experimental conditions. Intervention Group 1 served as a control, while women in Groups 2 and 3 were given print information about overcoming PA barriers. Women in Group 3 were also invited to discuss the development of local strategies for the promotion of PA among mothers of young children. The primary strategies included increasing partner support, social advocacy, and capacity building, and were implemented through collaboration among participants, researchers, and community organizations. Main Outcome Measures Adequate physical activity (PA), self-efficacy (SE) and partner support (PS). Results: Following the intervention, women in Group 3 were significantly more likely to meet guidelines for PA than controls (odds ratio [OR]=1.71, confidence interval [CI]=1.05–2.77)] after controlling for age and PA at baseline. After controlling for baseline PA, residualized change in SE (OR=1.86, CI=1.17–2.94) and PS (OR=2.29, CI=1.46–3.58) significantly predicted meeting guidelines. After controlling for residual change in PS and SE, the significant intervention effect was attenuated (Group 3 OR=1.40, CI=0.76–2.36), indicating that partner support and self-efficacy may be mediators of physical activity behavior change. Conclusions The findings indicate that community participation approaches that facilitate increased self-efficacy and partner support can be effective in increasing PA among mothers of young children.
Resumo:
The purpose of this study was to examine the effect of prolonged exercise oil plasma lipid and lipoprotein concentrations and to identify caloric time-points where changes occurred. Eleven active male Subjects ran oil a treadmill at 70%,, of maximal fitness (VO2max) and expended 6 278.7 kilojoules (Kj) energy (1500 kcal). Blood samples were obtained at the 4185.8 Kj (1000 kcal) time-point during exercise and at each additional 418.6 Kj (100 kcal) expenditure until 6278.7 Kj was expended. After correcting for plasma volume changes, decreases in low-density lipoprotein cholesterol (LDL-C) were observed during exercise at time-points corresponding to 4604.4 and 5441.5 Kj (1100 and 1300 kcal) of energy expenditure, and immediately after exercise. Total cholesterol concentrations decreased significantly at exercise kilojoule expenditures of 4604.4, 5441.5 and 5860.1 (1100, 1300 and 1400 kcal). There were also exercise induced increases in high-density lipoprotein cholesterol (HDL-C) and HDL2-C concentrations immediately after exercise. Although acute lipid and lipoprotein changes are typically reported in the days following exercise, the Current data indicate that some lipoprotein concentrations change during acute exercise. Our data suggest that a threshold of exercise may be necessary to change lipoproteins during exercise. Future work Should identify potential mechanisms (lipoprotein lipase, cholesterol ester transport protein, LDL uptake) that alter lipoprotein concentrations during prolonged exercise.