985 resultados para Optimal unit commitment
Resumo:
The purpose of this master’s thesis was to develop a method to be used in the selection of an optimal energy system for buildings and districts. The term optimal energy system was defined as the energy system which best fulfils the requirements of the stakeholder on whose preferences the energy systems are evaluated. The most influential stakeholder in the process of selecting an energy system was considered to be the district developer. The selection method consisted of several steps: Definition of the district, calculating the energy consumption of the district and buildings within the district, defining suitable energy system alternatives for the district, definition of the comparing criteria, calculating the parameters of the comparing criteria for each energy system alternative and finally using a multi-criteria decision method to rank the alternatives. For the purposes of the selection method, the factors affecting the energy consumption of buildings and districts and technologies enabling the use of renewable energy were reviewed. The key element of the selection method was a multi-criteria decision making method, PROMETHEE II. In order to compare the energy system alternatives with the developed method, the comparing criteria were defined in the study. The criteria included costs, environmental impacts and technological and technical characteristics of the energy systems. Each criterion was given an importance, based on a questionnaire which was sent for the steering groups of two district development projects. The selection method was applied in two case study analyses. The results indicate that the selection method provides a viable and easy way to provide the decision makers alternatives and recommendations regarding the selection of an energy system. Since the comparison is carried out by changing the alternatives into numeric form, the presented selection method was found to exclude any unjustified preferences over certain energy systems alternatives which would affect the selection.
Resumo:
The energy reform, which is happening all over the world, is caused by the common concern of the future of the humankind in our shared planet. In order to keep the effects of the global warming inside of a certain limit, the use of fossil fuels must be reduced. The marginal costs of the renewable sources, RES are quite high, since they are new technology. In order to induce the implementation of RES to the power grid and lower the marginal costs, subsidies were developed in order to make the use of RES more profitable. From the RES perspective the current market is developed to favor conventional generation, which mainly uses fossil fuels. Intermittent generation, like wind power, is penalized in the electricity market since it is intermittent and thus diffi-cult to control. Therefore, the need of regulation and thus the regulation costs to the producer differ, depending on what kind of generation market participant owns. In this thesis it is studied if there is a way for market participant, who has wind power to use the special characteristics of electricity market Nord Pool and thus reach the gap between conventional generation and the intermittent generation only by placing bids to the market. Thus, an optimal bid is introduced, which purpose is to minimize the regulation costs and thus lower the marginal costs of wind power. In order to make real life simulations in Nord Pool, a wind power forecast model was created. The simulations were done in years 2009 and 2010 by using a real wind power data provided by Hyötytuuli, market data from Nord Pool and wind forecast data provided by Finnish Meteorological Institute. The optimal bid needs probability intervals and therefore the methodology to create probability distributions is introduced in this thesis. In the end of the thesis it is shown that the optimal bidding improves the position of wind power producer in the electricity market.
Resumo:
The main objective of this master’s thesis is to provide a comprehensive view to cloud computing and SaaS, and analyze how well CADM, a unit of Capgemini Finland Ltd., would fit to the cloud-based SaaS business. Another objective for this thesis is to investigate how public clouds would fit for CADM as a delivery model, if they would provide SaaS applications to their customers. This master’s thesis is executed by investigating characteristics of cloud computing and SaaS especially from application provider point of view. This is done by exploring what kinds of researches and analysis there have been done regarding these two phenomena during past few years. Then CADM’s current business model and operations are analyzed from SaaS’s and public cloud’s perspective. This analyzing part is conducted by using SWOT analysis which is widely used analytical tool when observing company’s strategic position and when figuring out possibilities how to improve company’s operations. The conducted analysis and observations reveals that CADM should pursue SaaS business as it could provide remarkable advantages and strengthen their position in current markets. However, pure SaaS model would not be the optimal solution for CADM because they do not have own product which could be transformed to SaaS model, and they lack of Infrastructure Management ability. Also public cloud would not be the most suitable delivery model for them if providing SaaS services. The main observation of this thesis is that CADM should adopt the SaaS model via Capgemini Immediate offering.
Resumo:
Since the advent of mechanized farming and intensive use of agricultural machinery and implements on the properties, the soil began to receive greater load of machinery traffic, which can cause increased soil compaction. The aim of this study was to evaluate the spatial variability of soil mechanical resistance to penetration (RP) in the layers of 0.00-0.10, 0.10-0.20, 0.20-0.30 and 0.30-0.40m, using geostatistics in an area cultivated with mango in Haplic Vertisol of the northeastern semi-arid, with mobile unit equipped with electronic penetrometer. The RP data was collected in 56 points from an area of 3 ha, and random soil samples were collected to determine the soil moisture and texture. For RP data analysis we used descriptive statistics and geostatistics. The soil mechanical resistance to penetration presented increased variability, with adjustment of the spherical and exponential semivariograms in the layers. We found that 42% of the area in the layer of 0.10-0.20m showed RP values above 2.70 MPa. Maximum values of RP were found in the layer of 0.19-0.27m, predominantly in 56% of the area.
Resumo:
Työn tavoitteena oli tutkia innovaatioita ja organisaation innovaatiokyvykkyyttä, innovaatiokyvykkyyden taustatekijöitä sekä innovaatioprosessin alkupään (Fuzzy Front End, FFE) sekä siinä tapahtuvan päätöksenteon johtamista. Lisäksi tavoitteena oli suunnitella innovaatioprosessin alkupään toimintamalli selkeyttämään toimintaa prosessin alkupäässä sekä antaa toimenpide-ehdotuksia ja suosituksia. Tutkimuksen teoriaosuus tehtiin kirjallisuustutkimuksena. Tutkimuksen empiirinen osuus suoritettiin case -analyysinä yrityksen henkilöhaastattelu- ja toimintatutkimuksen muodossa. Innovaatioprosessin alkupäähän on tunnistettu toimintamalleja, joilla selkeytetään ja tehostetaan prosessin alkupään vaiheita. Vaiheet ovat mahdollisuuksien tunnistaminen, mahdollisuuksien analysointi, ideointi, ideoiden valitseminen ja konsepti- ja teknologiakehitys. Innovaatioprosessin rinnalla kulkee päätöksenteon prosessi, jonka suhteen tunnistetaan selkeät päätöksentekokohdat ja kriteerit prosessissa etenemiselle. Innovaatio- ja päätöksentekoprosessiin osallistuu eri vaiheissa sekä yrityksen sisäiset, kuten henkilöstö, että ulkoiset, kuten asiakkaat, toimittajat ja verkostokumppanit, sidosryhmät. Lisäksi innovaatioprosessin toimintaan vaikuttavat johdon tuki ja sitoutuminen, osallistujien kyky luovuuteen sekä muut innovaatiokyvykkyyden taustatekijät. Kaikki nämä tekijät tulee huomioida innovaatioprosessin alkupään mallia suunniteltaessa. Tutkimus tehtiin tietoliikennealan yrityksen tarpeisiin. Yrityksessä on käytössä aloitetoimintaa, mutta sen ei koeta tarjoavan riittävästi ideoita yrityksen tuotekehityksen tarpeisiin. Yrityksen henkilöstön innovaatiopotentiaali on suuri, mikä halutaan hyödyntää paremmin suunnittelemalla yrityksen käyttöön soveltuva, innovaatioprosessin alkupään toimintaan ohjaava, vakioitu ja henkilöstöä ja muita yhteistyötahoja, kuten asiakkaita, osallistava toimintamalli. Toimenpide-ehdotuksina ja suosituksina esitetään innovaatioprosessin alkupään johtamisen toimintamallia. Esitetyssä mallissa määritellään vaiheet, menetelmät, päätöksenteko ja vastuut. Toimintamalli esitetään soveltuen yhdistettäväksi yrityksessä käytössä olevaan innovaatioprosessin loppupään, tuotekehitysprojektien läpiviemisen, malliin.
Resumo:
This study investigates futures market efficiency and optimal hedge ratio estimation. First, cointegration between spot and futures prices is studied using Johansen method, with two different model specifications. If prices are found cointegrated, restrictions on cointegrating vector and adjustment coefficients are imposed, to account for unbiasedness, weak exogeneity and prediction hypothesis. Second, optimal hedge ratios are estimated using static OLS, and time-varying DVEC and CCC models. In-sample and out-of-sample results for one, two and five period ahead are reported. The futures used in thesis are RTS index, EUR/RUB exchange rate and Brent oil, traded in Futures and options on RTS.(FORTS) For in-sample period, data points were acquired from start of trading of each futures contract, RTS index from August 2005, EUR/RUB exchange rate March 2009 and Brent oil October 2008, lasting till end of May 2011. Out-of-sample period covers start of June 2011, till end of December 2011. Our results indicate that all three asset pairs, spot and futures, are cointegrated. We found RTS index futures to be unbiased predictor of spot price, mixed evidence for exchange rate, and for Brent oil futures unbiasedness was not supported. Weak exogeneity results for all pairs indicated spot price to lead in price discovery process. Prediction hypothesis, unbiasedness and weak exogeneity of futures, was rejected for all asset pairs. Variance reduction results varied between assets, in-sample in range of 40-85 percent and out-of sample in range of 40-96 percent. Differences between models were found small, except for Brent oil in which OLS clearly dominated. Out-of-sample results indicated exceptionally high variance reduction for RTS index, approximately 95 percent.
Resumo:
T helper (Th) cells are vital regulators of the adaptive immune system. When activated by presentation of cognate antigen, Th cells demonstrate capacity to differentiate into functionally distinct effector cell subsets. The Th2 subset is required for protection against extracellular parasites, such as helminths, but is also closely linked to pathogenesis of asthma and allergies. The intracellular molecular signal transduction pathways regulating T helper cell subset differentiation are still incompletely known. Moreover, great majority of studies regarding Th2 differentiation have been conducted with mice models, while studies with human cells have been fewer in comparison. The goal of this thesis was to characterize molecular mechanisms promoting the development of Th2 phenotype, focusing specifically on human umbilical cord blood T cells as an experimental model. These primary cells, activated and differentiated to Th2 cells in vitro, were investigated by complementary system-wide approaches, targeting levels of mRNA, proteins, and lipid molecules. Specifically, the results indicated IL4-regulated recruitment of nuclear protein, and described novel components of the Th2-promoting STAT6 enhanceosome complex. Furthermore, the development of the activated effector cell phenotype was found to correlate with remodeling of the cellular lipidome. These findings will hopefully advance the understanding of human Th2 cell lineage commitment and development of Th2-associated disease states.
Resumo:
Supporting patients with acute respiratory distress syndrome (ARDS), using a protective mechanical ventilation strategy characterized by low tidal volume and limitation of positive end-expiratory pressure (PEEP) is a standard practice in the intensive care unit. However, these strategies can promote lung de-recruitment, leading to the cyclic closing and reopening of collapsed alveoli and small airways. Recruitment maneuvers (RM) can be used to augment other methods, like positive end-expiratory pressure and positioning, to improve aerated lung volume. Clinical practice varies widely, and the optimal method and patient selection for recruitment maneuvers have not been determined, considerable uncertainty remaining regarding the appropriateness of RM. This review aims to discuss recent findings about the available types of RM, and compare the effectiveness, indications and adverse effects among them, as well as their impact on morbidity and mortality in ARDS patients. Recent developments include experimental and clinical evidence that a stepwise extended recruitment maneuver may cause an improvement in aerated lung volume and decrease the biological impact seen with the traditionally used sustained inflation, with less adverse effects. Prone positioning can reduce mortality in severe ARDS patients and may be an useful adjunct to recruitment maneuvers and advanced ventilatory strategies, such noisy ventilation and BIVENT, which have been useful in providing lung recruitment.
Resumo:
According to several surveys and observations, the percentage of successfully conducted IT projects without over-budgeting and delays in time schedule are extremely low. Many projects also are evaluated as failures in terms of delivered functionality. Nuldén (1996) compares IT projects with bad movies; after watching for 2 hours, one still tries to finish it even though one understands that it is a complete waste of time. The argument for that is 'I've already invested too much time to terminate it now'. The same happens with IT projects: sometimes the company continues wasting money on these projects for a long time, even though there are no expected benefits from these projects. Eventually these projects are terminated anyway, but until this moment, the company spends a lot. The situation described above is a consequence of “escalation of commitment” - project continuation even after a manager receives negative feedback of the project’s success probability. According to Keil and Mähring (2010), even though escalation can occur in any type of project, it is more common among complex technological projects, such as IT projects. Escalation of commitment very often results in runaway projects. In order to avoid it, managers use de-escalation strategies, which allow the resources to be used in more effective. These strategies lead to project termination or turning around, which stops the flow of wasted investments. Numbers of researches explore escalation of commitment phenomena based on experiments and business cases. Moreover, during the last decade several frameworks were proposed for de-escalation strategy. However, there is no evidence of successful implementation of the de-escalation of commitment strategy in the literature. In addition, despite that fact that IT project management methodologies are widely used in the companies, none of them cover the topic of escalation of commitment risks. At the same time, there are no researches proposing the way to implement de-escalation of commitment strategy into the existing project management methodology The research is focused on a single case of large ERP implementation project by the consulting company. Hence, the main deliverables of the study include suggestions of improvement in de-escalation methods and techniques in the project and in the company. Moreover, the way to implement these methods into existing project management methodology and into the company general policies is found.
Resumo:
Sequestration of carbon dioxide in mineral rocks, also known as CO2 Capture and Mineralization (CCM), is considered to have a huge potential in stabilizing anthropogenic CO2 emissions. One of the CCM routes is the ex situ indirect gas/sold carbonation of reactive materials, such as Mg(OH)2, produced from abundantly available Mg-silicate rocks. The gas/solid carbonation method is intensively researched at Åbo Akademi University (ÅAU ), Finland because it is energetically attractive and utilizes the exothermic chemistry of Mg(OH)2 carbonation. In this thesis, a method for producing Mg(OH)2 from Mg-silicate rocks for CCM was investigated, and the process efficiency, energy and environmental impact assessed. The Mg(OH)2 process studied here was first proposed in 2008 in a Master’s Thesis by the author. At that time the process was applied to only one Mg-silicate rock (Finnish serpentinite from the Hitura nickel mine site of Finn Nickel) and the optimum process conversions, energy and environmental performance were not known. Producing Mg(OH)2 from Mg-silicate rocks involves a two-staged process of Mg extraction and Mg(OH)2 precipitation. The first stage extracts Mg and other cations by reacting pulverized serpentinite or olivine rocks with ammonium sulfate (AS) salt at 400 - 550 oC (preferably < 450 oC). In the second stage, ammonia solution reacts with the cations (extracted from the first stage after they are leached in water) to form mainly FeOOH, high purity Mg(OH)2 and aqueous (dissolved) AS. The Mg(OH)2 process described here is closed loop in nature; gaseous ammonia and water vapour are produced from the extraction stage, recovered and used as reagent for the precipitation stage. The AS reagent is thereafter recovered after the precipitation stage. The Mg extraction stage, being the conversion-determining and the most energy-intensive step of the entire CCM process chain, received a prominent attention in this study. The extraction behavior and reactivity of different rocks types (serpentinite and olivine rocks) from different locations worldwide (Australia, Finland, Lithuania, Norway and Portugal) was tested. Also, parametric evaluation was carried out to determine the optimal reaction temperature, time and chemical reagent (AS). Effects of reactor types and configuration, mixing and scale-up possibilities were also studied. The Mg(OH)2 produced can be used to convert CO2 to thermodynamically stable and environmentally benign magnesium carbonate. Therefore, the process energy and life cycle environmental performance of the ÅAU CCM technique that first produces Mg(OH)2 and the carbonates in a pressurized fluidized bed (FB) were assessed. The life cycle energy and environmental assessment approach applied in this thesis is motivated by the fact that the CCM technology should in itself offer a solution to what is both an energy and environmental problem. Results obtained in this study show that different Mg-silicate rocks react differently; olivine rocks being far less reactive than serpentinite rocks. In summary, the reactivity of Mg-silicate rocks is a function of both the chemical and physical properties of rocks. Reaction temperature and time remain important parameters to consider in process design and operation. Heat transfer properties of the reactor determine the temperature at which maximum Mg extraction is obtained. Also, an increase in reaction temperature leads to an increase in the extent of extraction, reaching a maximum yield at different temperatures depending on the reaction time. Process energy requirement for producing Mg(OH)2 from a hypothetical case of an iron-free serpentine rock is 3.62 GJ/t-CO2. This value can increase by 16 - 68% depending on the type of iron compound (FeO, Fe2O3 or Fe3O4) in the mineral. This suggests that the benefit from the potential use of FeOOH as an iron ore feedstock in iron and steelmaking should be determined by considering the energy, cost and emissions associated with the FeOOH by-product. AS recovery through crystallization is the second most energy intensive unit operation after the extraction reaction. However, the choice of mechanical vapor recompression (MVR) over the “simple evaporation” crystallization method has a potential energy savings of 15.2 GJ/t-CO2 (84 % savings). Integrating the Mg(OH)2 production method and the gas/solid carbonation process could provide up to an 25% energy offset to the CCM process energy requirements. Life cycle inventory assessment (LCIA) results show that for every ton of CO2 mineralized, the ÅAU CCM process avoids 430 - 480 kg CO2. The Mg(OH)2 process studied in this thesis has many promising features. Even at the current high energy and environmental burden, producing Mg(OH)2 from Mg-silicates can play a significant role in advancing CCM processes. However, dedicated future research and development (R&D) have potential to significantly improve the Mg(OH)2 process performance.
Resumo:
In this doctoral thesis, a power conversion unit for a 10 kWsolid oxide fuel cell is modeled, and a suitable control system is designed. The need for research was identified based on an observation that there was no information available about the characteristics of the solid oxide fuel cell from the perspective of power electronics and the control system, and suitable control methods had not previously been studied in the literature. In addition, because of the digital implementation of the control system, the inherent characteristics of the digital system had to be taken into account in the characteristics of the solid oxide fuel cell (SOFC). The characteristics of the solid oxide fuel cell as well the methods for the modeling and control of the DC/DC converter and the grid converter are studied by a literature survey. Based on the survey, the characteristics of the SOFC as an electrical power source are identified, and a solution to the interfacing of the SOFC in distributed generation is proposed. A mathematical model of the power conversion unit is provided, and the control design for the DC/DC converter and the grid converter is made based on the proposed interfacing solution. The limit cycling phenomenon is identified as a source of low-frequency current ripple, which is found to be insignificant when connected to a grid-tied converter. A method to mitigate a second harmonic originating from the grid interface is proposed, and practical considerations of the operation with the solid oxide fuel cell plant are presented. At the theoretical level, the thesis discusses and summarizes the methods to successfully derive a model for a DC/DC converter, a grid converter, and a power conversion unit. The results of this doctoral thesis can also be used in other applications, and the models and methods can be adopted to similar applications such as photovoltaic systems. When comparing the results with the objectives of the doctoral thesis, we may conclude that the objectives set for the work are met. In this doctoral thesis, theoretical and practical guidelines are presented for the successful control design to connect a SOFC-based distributed generation plant to the utility grid.
Resumo:
The purpose of this thesis is to examine what the normative, effective social Intranet solution is for Tellabs Mobile Routing business unit in terms of sharing knowledge more openly and effectively, fostering innovation, and improving team spirit and positive employee experience. Additionally, these aspects are researched from the intra- and inter-organizational points of view. The research is based on previous literature and empirical interviews. Based on these two items, an eight-fold recommendation proposal was created to change the current Intranet to become an effective social Intranet.