960 resultados para Non-constant coefficient diffusion equations
Resumo:
A practical problem of synchronization of a non-ideal (i.e. when the excitation is influenced by the response of the system) and non-linear vibrating system was posed and investigated by means of numerical simulations. Two rotating unbalanced motors compose the mathematical model considered here with limited power supply mounted on the horizontal beam of a simple portal frame. As a starting point, the problem is reduced to a four-degrees-of-freedom model and its equations of motion, derived elsewhere via a Lagrangian approach, are presented. The numerical results show the expected phenomena associated with the passage through resonance with limited power. Further, for a two-to-one relationship between the frequencies associated with the first symmetric mode and the sway mode, by using the variation of torque constants, the control of the self-synchronization and synchronization (in the system) are observed at certain levels of excitations.
Resumo:
In this paper, a load transportation system in platforms or suspended by cables is considered. It is a monorail device and is modelled as an inverted pendulum built on a car driven by a DC motor. The governing equations of motion were derived via Lagrange's equations. In the mathematical model we consider the interaction between the DC motor and the dynamical system, that is, we have a so-called non-ideal periodic problem. The problem is analysed and we also developed an optimal linear control design to stabilize the problem.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Some dynamical properties for a dissipative time-dependent oval-shaped billiard are studied. The system is described in terms of a four-dimensional nonlinear mapping. Dissipation is introduced via inelastic collisions of the particle with the boundary, thus implying that the particle has a fractional loss of energy upon collision. The dissipation causes profound modifications in the dynamics of the particle as well as in the phase space of the non-dissipative system. In particular, inelastic collisions can be assumed as an efficient mechanism to suppress Fermi acceleration of the particle. The dissipation also creates attractors in the system, including chaotic. We show that a slightly modification of the intensity of the damping coefficient yields a drastic and sudden destruction of the chaotic attractor, thus leading the system to experience a boundary crisis. We have characterized such a boundary crisis via a collision of the chaotic attractor with its own basin of attraction and confirmed that inelastic collisions do indeed suppress Fermi acceleration in two-dimensional time-dependent billiards. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A non-twist Hamiltonian system perturbed by two waves with particular wave numbers can present Robust Tori, barriers created by the vanishing of the perturbing Hamiltonian at some defined positions. When Robust Tori exist, any trajectory in phase space passing close to them is blocked by emergent invariant curves that prevent the chaotic transport. We analyze the breaking up of the RT as well the transport dependence on the wave numbers and on the wave amplitudes. Moreover, we report the chaotic web formation in the phase space and how this pattern influences the transport.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Suppose that u(t) is a solution of the three-dimensional Navier-Stokes equations, either on the whole space or with periodic boundary conditions, that has a singularity at time T. In this paper we show that the norm of u(T - t) in the homogeneous Sobolev space (H)over dot(s) must be bounded below by c(s)t(-(2s-1)/4) for 1/2 < s < 5/2 (s not equal 3/2), where c(s) is an absolute constant depending only on s; and by c(s)parallel to u(0)parallel to((5-2s)/5)(L2)t(-2s/5) for s > 5/2. (The result for 1/2 < s < 3/2 follows from well-known lower bounds on blowup in Lp spaces.) We show in particular that the local existence time in (H)over dot(s)(R-3) depends only on the (H)over dot(s)-norm for 1/2 < s < 5/2, s not equal 3/2. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4762841]
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
No presente trabalho, testou-se o efeito de fatores químicos liberados por coespecíficos sobre o crescimento e sua variabilidade no grupo (crescimento heterogêneo, CHet), numa espécie gregária, o curimbatá, Prochilodus lineatus. O CHet foi avaliado pelo coeficiente de variação do peso dos animais, em dois períodos consecutivos de 21 dias. Os peixes foram agrupados em aquários (4 peixes cada) que receberam água corrente, com vazão constante, de tanques contendo (C) ou não (N) coespecíficos. Quatro condições foram delineadas de acordo com a água que abastecia os aquários: a) água com contato prévio com coespecíficos durante todo o experimento (CC); b) água sem contato prévio com coespecíficos durante todo o experimento (NN); c) água com contato prévio com coespecíficos apenas no primeiro período, 0 a 21 dias (CN); e d) apenas no período de 21 a 42 dias (NC). Ao término dos experimentos, verificou-se que ocorre modulação química sobre a variabilidade de crescimento em P. lineatus: os peixes que receberam água com contato prévio com coespecífico (C) apresentaram exacerbação do CHet. Fato que corrobora a idéia de que o mecanismo predominante da determinação da variação intra-específica do crescimento, em espécies gregárias, está associado à ação de fatores químicos liberados por coespecíficos.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We report on some recent solutions of the Dyson-Schwinger equations for the infrared behavior of the gluon propagator and coupling constant, discussing their differences and proposing that these different behaviors can be tested through hadronic phenomenology. We discuss which kind of phenomenological tests can be applied to the gluon propagator and coupling constant, how sensitive they are to the infrared region of momenta and what specific solution is preferred by the experimental data.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
For data obtained from horizontal soil column experiments, the determination of soil-water transport characteristics and functions would be aided by a single-form equation capable of objectively describing water content theta vs. time t at given position x(f). Our study was conducted to evaluate two such possible equations, one having the form of the Weibull frequency distribution, and the other being called a bipower form. Each equation contained three parameters, and was fitted by nonlinear least squares to the experimental data from three separate columns of a single soil. Across the theta range containing the measured data points obtained by gamma-ray attenuation, the two equations were in close agreement. The resulting family of theta(x(f),t) transients, as obtained from either equation, enabled the evaluation of exponent n in the t(n) dependence of the positional advance of a given theta. Not only was n found to be <0.5 at low theta values, but it also increased with theta and tended toward 0.5 as theta approached its sated (near-saturated) value. Some quantitative uncertainty in n(theta) does arise due to the reduced number of data points available at the higher water contents. Without claiming non-Boltzmann behavior (n < 0.5) as necessarily representative of all soils, we nonetheless consider n(theta) to be worthy of further study for evaluating its significance and implications.