Non-linear growth models for bullfrog tadpoles
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
20/05/2014
20/05/2014
01/08/2012
|
Resumo |
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Descrever o crescimento animal em modelos não lineares permite uma avaliação criteriosa desse comportamento, além de revelar informações importantes da resposta a um determinado tratamento. Neste estudo objetivou-se avaliar o ajuste do crescimento em peso e comprimento total de girinos de rã-touro (Lithobates catesbeianus) em quatro modelos não lineares: Gompertz, Y = A exp (-exp (-b (t-T))); Von Bertalanffy, Y = A (1 - K exp (-B t))³; Logístico, Y = A (1+ K exp (-B t))-1 e Brody, Y=A (1 - K exp (-B t)). Foram utilizados 3.240 girinos, com peso médio inicial de 0,044g e comprimento total médio de 12,79 mm, no estágio 25 de Gosner. Os critérios utilizados para selecionar o modelo que melhor descreveu a curva de crescimento foram: o quadrado médio do resíduo (QMR); o coeficiente de determinação (R²); análise gráfica dos resíduos; desvio médio absoluto dos resíduos (DMA). Os dados apresentados para peso e comprimento total não se ajustaram ao modelo de Brody, assim como o modelo de Von Bertalanffy subestimou os pesos iniciais, mostrando dificuldade de interpretação biológica, indicando que esses modelos não são apropriados para essa espécie na fase aquática. Os modelos de Gompertz e Logístico são adequados para descrever o crescimento e comprimento de girinos de rã-touro em cativeiro. Describing animal growth rate using non-linear models allows a detailed evaluation of growth behavior. Four non-linear models were used to fit weight gain and total length data of bullfrog (Lithobates catesbeianus) tadpoles, as follows: Gompertz, Y = A exp (-exp (-b (t-T))); Von Bertalanffy, Y = A (1 - K exp (-B t))³; Logistic, Y = A (1+ K exp (-B t))-1 and Brody, Y=A (1 - K exp (-B t)). We used 3,240 tadpoles, with average initial weight 0.044 g and average total length 12.79 mm, stage 25 Gosner. The measurements were conducted every ten days on 10% of the animals in every tank. The criteria used to select the model that best described the growth curve were: Residual Mean Square (RMS); determination coefficient (R²); residual graphical analysis; residual mean absolute deviation (MAD). Brody mathematical model was not a good fit for weight gain and total length, while Von Bertalanffy model underestimated tadpole initial weight, thus showing the difficulty of mathematical models to describe biological data at this growth stage. However, the Gompertz and Logistic models were considered to be an adequate fitting to describe growth rate and total length of bullfrog tadpoles in captivity. |
Formato |
454-462 |
Identificador |
http://dx.doi.org/10.1590/S1413-70542012000400010 Ciência e Agrotecnologia. Editora da Universidade Federal de Lavras (UFLA), v. 36, n. 4, p. 454-462, 2012. 1413-7054 http://hdl.handle.net/11449/30206 10.1590/S1413-70542012000400010 S1413-70542012000400010 WOS:000307715200010 S1413-70542012000400010.pdf |
Idioma(s) |
eng |
Publicador |
Editora da Universidade Federal de Lavras (UFLA) |
Relação |
Ciência e Agrotecnologia |
Direitos |
openAccess |
Palavras-Chave | #Ranicultura #curva de crescimento #Lithobates catesbeianus #Frog farm #growth curve #Lithobates catesbeianus |
Tipo |
info:eu-repo/semantics/article |