834 resultados para Neuro-signalling
Resumo:
Twitter’s hashtag functionality is now used for a very wide variety of purposes, from covering crises and other breaking news events through gathering an instant community around shared media texts (such as sporting events and TV broadcasts) to signalling emotive states from amusement to despair. These divergent uses of the hashtag are increasingly recognised in the literature, with attention paid especially to the ability for hashtags to facilitate the creation of ad hoc or hashtag publics. A more comprehensive understanding of these different uses of hashtags has yet to be developed, however. Previous research has explored the potential for a systematic analysis of the quantitative metrics that could be generated from processing a series of hashtag datasets. Such research found, for example, that crisis-related hashtags exhibited a significantly larger incidence of retweets and tweets containing URLs than hashtags relating to televised events, and on this basis hypothesised that the information-seeking and -sharing behaviours of Twitter users in such different contexts were substantially divergent. This article updates such study and their methodology by examining the communicative metrics of a considerably larger and more diverse number of hashtag datasets, compiled over the past five years. This provides an opportunity both to confirm earlier findings, as well as to explore whether hashtag use practices may have shifted subsequently as Twitter’s userbase has developed further; it also enables the identification of further hashtag types beyond the “crisis” and “mainstream media event” types outlined to date. The article also explores the presence of such patterns beyond recognised hashtags, by incorporating an analysis of a number of keyword-based datasets. This large-scale, comparative approach contributes towards the establishment of a more comprehensive typology of hashtags and their publics, and the metrics it describes will also be able to be used to classify new hashtags emerging in the future. In turn, this may enable researchers to develop systems for automatically distinguishing newly trending topics into a number of event types, which may be useful for example for the automatic detection of acute crises and other breaking news events.
Resumo:
Follicular lymphoma (FL) is the second most common non-Hodgkin lymphoma. It is an indolent and clinically heterogeneous disease, which is generally considered incurable. Currently, immunochemotherapy has significantly improved the outcome of FL patients. This is based on the combination of rituximab, a monoclonal anti-CD20 antibody, with chemotherapy, and is used at present as a standard first-line therapy in FL. Thus far, however, patients have been selected for treatment based on clinical risk factors and indices that were developed before the rituximab era. Therefore, there is a growing need to understand the molecular mechanisms underlying the disease, which would not only provide information to predict survival in the rituximab era, but also enable the design of more targeted therapeutic strategies. In this study, our aim was to identify genes predicting the outcome in FL patients treated with immunochemotherapy. Thus, we performed a cDNA microarray with 24 FL patients. When gene expression differences from diagnostic tumour samples were related to the clinical outcome, we identified novel genes with a prognostic impact on survival. The expression of selected genes was further characterized with quantitative PCR and immunohistochemistry (IHC). Interestingly, the prognostic influence of these genes was often associated with their expression in non-malignant cells instead of tumour cells. Based on the observed gene expression patterns, we analyzed the abundance and prognostic value of non-malignant immune cells in 95-98 FL patients treated with immunochemotherapy. We observed that a high content of tumour-associated macrophages was a marker of a favourable prognosis. In contrast, the accumulation of mast cells correlated with a poor outcome and was further associated with tumour vascularity. Increased microvessel density also correlated with an inferior outcome. In addition, we used the same microarray data with a systems biology approach to identify signalling pathways or groups of genes capable of separating patients with favourable or adverse outcomes. Among the transcripts, there were many genes associated with signal transducers and activators of the transcription (STAT5a) pathway. When IHC was used as validation, STAT5a expression was mostly observed in T-cells and follicular dendritic cells, and expression was found to predict a favourable outcome. In cell cultures, rituximab was observed to induce the expression of STAT5a-associated interleukins in human lymphoma cell lines, which might provide a possible link for the cross-talk between rituximab-induced FL cells and their microenvironment. In conclusion, we have demonstrated that the microenvironment has a prognostic role in FL patients treated with immunochemotherapy. The results also address the importance of re-evaluating the prognostic markers in the rituximab era of lymphoma therapies.
Resumo:
Plexins (plxn) are receptors of semaphorins (sema), which were originally characterized as axon guidance cues. Semaphorin-plexin signalling has now been implicated in many other developmental and pathological processes. In this thesis, my first aim was to study the expression of plexins during mouse development. My second aim was to study the function of Plexin B2 in the development of the kidney. Thirdly, my objective was to elucidate the evolutionary conservation of Plexin B2 by investigating its sequence, expression and function in developing zebrafish. I show by in situ hybridisation that plexins are widely expressed also in the non-neuronal tissues during mouse development. Plxnb1 and Plxnb2, for example, are expressed also in the ureteric epithelium, developing glomeruli and undifferentiated metanephric mesenchyme of the developing kidney. Plexin B2-deficient (Plxnb2-/-) mice die before birth and have severe defects in the nervous system. I demonstrate that they develop morphologically normal but hypoplastic kidneys. The ureteric epithelium of Plxnb2-/- kidneys has fewer branches and a lower rate of proliferating cells. 10% of the embryos show unilateral double ureters and kidneys. The defect in the branching is intrinsic to the epithelium as the isolated ureteric epithelium grown in vitro fails to respond to Glial-cell-line-derived neurotrophic factor (Gdnf). We prove by co-immunoprecipitation that Plexin B2 interacts with the Gdnf-receptor Ret. Sema4C, the Plexin B2 ligand, increases branching of the ureteric epithelium in controls but not in Plxnb2-/- kidney explants. These results suggest that Sema4C-Plexin B2 signalling modulates ureteric branching in a positive manner, possibly through directly regulating the activation of Ret. I cloned the zebrafish orthologs of Plexin B2, Plexin B2a and B2b. The corresponding proteins contain the conserved domains the B-subfamily plexins. Especially the expression pattern of plxnb2b recapitulates many aspects of the expression pattern of Plxnb2 in mouse. Plxnb2a and plxnb2b are expressed, for example, in the pectoral fins and at the midbrain-hindbrain region during zebrafish development. The nearly complete knockdown of Plexin B2a alone or together with the 45% knockdown of Plexin B2b did not interfere with the normal development of the zebrafish. In conclusion, my thesis reveals that plexins are broadly expressed during mouse embryogenesis. It also shows that Sema4C-Plexin B2 signalling modulates the branching of the ureteric epithelium during kidney development, perhaps through a direct interaction with Ret. Finally, I show that the sequence and expression of Plexin B2a and B2b are conserved in zebrafish. Their knockdown does not, however, result in the exencephaly phenotype of Plxnb2-/- mice.
Resumo:
A nonlinear adaptive system theoretic approach is presented in this paper for effective treatment of infectious diseases that affect various organs of the human body. The generic model used does not represent any specific disease. However, it mimics the generic immunological dynamics of the human body under pathological attack, including the response to external drugs. From a system theoretic point of view, drugs can be interpreted as control inputs. Assuming a set of nominal parameters in the mathematical model, first a nonlinear controller is designed based on the principle of dynamic inversion. This treatment strategy was found to be effective in completely curing "nominal patients". However, in some cases it is ineffective in curing "realistic patients". This leads to serious (sometimes fatal) damage to the affected organ. To make the drug dosage design more effective, a model-following neuro-adaptive control design is carried out using neural networks, which are trained (adapted) online. From simulation studies, this adaptive controller is found to be effective in killing the invading microbes and healing the damaged organ even in the presence of parameter uncertainties and continuing pathogen attack.
Resumo:
Hypertension is a major risk factor for stroke, ischaemic heart disease, and the development of heart failure. Hypertension-induced heart failure is usually preceded by the development of left ventricular hypertrophy (LVH), which represents an adaptive and compensatory response to the increased cardiac workload. Biomechanical stress and neurohumoral activation are the most important triggers of pathologic hypertrophy and the transition of cardiac hypertrophy to heart failure. Non-clinical and clinical studies have also revealed derangements of energy metabolism in hypertensive heart failure. The goal of this study was to investigate in experimental models the molecular mechanisms and signalling pathways involved in hypertension-induced heart failure with special emphasis on local renin-angiotensin-aldosterone system (RAAS), cardiac metabolism, and calcium sensitizers, a novel class of inotropic agents used currently in the treatment of acute decompensated heart failure. Two different animal models of hypertensive heart failure were used in the present study, i.e. hypertensive and salt-sensitive Dahl/Rapp rats on a high salt diet (a salt-sensitive model of hypertensive heart failure) and double transgenic rats (dTGR) harboring human renin and human angiotensinogen genes (a transgenic model of hypertensive heart failure with increased local RAAS activity). The influence of angiotensin II (Ang II) on cardiac substrate utilization and cardiac metabolomic profile was investigated by using gas chromatography coupled to time-of-flight mass spectrometry to detect 247 intermediary metabolites. It was found that Ang II could alter cardiac metabolomics both in normotensive and hypertensive rats in an Ang II receptor type 1 (AT1)-dependent manner. A distinct substrate use from fatty acid oxidation towards glycolysis was found in dTGR. Altered cardiac substrate utilization in dTGR was associated with mitochondrial dysfunction. Cardiac expression of the redox-sensitive metabolic sensor sirtuin1 (SIRT1) was increased in dTGR. Resveratrol supplementation prevented cardiovascular mortality and ameliorated Ang II-induced cardiac remodeling in dTGR via blood pressure-dependent pathways and mechanisms linked to increased mitochondrial biogenesis. Resveratrol dose-dependently increased SIRT1 activity in vitro. Oral levosimendan treatment was also found to improve survival and systolic function in dTGR via blood pressure-independent mechanisms, and ameliorate Ang II-induced coronary and cardiomyocyte damage. Finally, using Dahl/Rapp rats it was demonstrated that oral levosimendan as well as the AT1 receptor antagonist valsartan improved survival and prevented cardiac remodeling. The beneficial effects of levosimendan were associated with improved diastolic function without significantly improved systolic changes. These positive effects were potentiated when the drug combination was administered. In conclusion, the present study points to an important role for local RAAS in the pathophysiology of hypertension-induced heart failure as well as its involvement as a regulator of cardiac substrate utilization and mitochondrial function. Our findings suggest a therapeutic role for natural polyphenol resveratrol and calcium sensitizer, levosimendan, and the novel drug combination of valsartan and levosimendan, in prevention of hypertension-induced heart failure. The present study also provides a better understanding of the pathophysiology of hypertension-induced heart failure, and may help identify potential targets for novel therapeutic interventions.
Resumo:
Type 2 diabetes is a risk factor for the development of cardiovascular disease. Recently, the term diabetic cardiomyopathy has been proposed to describe the changes in the heart that occur in response to chronic hyperglycemia and insulin resistance. Ventricular remodelling in diabetic cardiomyopathy includes left ventricular hypertrophy, increased interstitial fibrosis, apoptosis and diastolic dysfunction. Mechanisms behind these changes are increased oxidative stress and renin-angiotensin system activation. The diabetic Goto-Kakizaki rat is a non-obese model of type 2 diabetes that exhibits defective insulin signalling. Recently two interconnected stress response pathways have been discovered that link insulin signalling, longevity, apoptosis and cardiomyocyte hypertrophy. The insulin-receptor PI3K/Ak pathway inhibits proapoptotic FOXO3a in response to insulin signalling and the nuclear Sirt1 deacetylase inhibits proapoptotic p53 and modulates FOXO3a in favour of survival and growth. --- Levosimendan is a calcium sensitizing agent used for the management of acute decompensated heart failure. Levosimendan acts as a positive inotrope by sensitizing cardiac troponin C to calcium and exerts vasodilation by opening mitochondrial and sarcolemmal ATP-sensitive potassium channels. Levosimendan has been described to have beneficial effects in ventricular remodelling after myocardial infarction. The aims of the study were to characterize whether diabetic cardiomyopathy associates with cardiac dysfunction, cardiomyocyte apoptosis, hypertrophy and fibrosis in spontaneously diabetic Goto-Kakizaki (GK) rats, which were used to model type 2 diabetes. Protein expression and activation of the Akt FOXO3a and Sirt1 p53 pathways were examined in the development of ventricular remodelling in GK rats with and without myocardial infarction (MI). The third and fourth studies examined the effects of levosimendan on ventricular remodelling and gene expression in post-MI GK rats. The results demonstrated that diabetic GK rats develop both modest hypertension and features similar to diabetic cardiomyopathy including cardiac dysfunction, LV hypertrophy and fibrosis and increased apoptotic signalling. MI induced a sustained increase in cardiomyocyte apoptosis in GK rats together with aggravated LV hypertrophy and fibrosis. The GK rat myocardium exhibited decreased Akt- FOXO3a phosphorylation and increased nuclear translocation of FOXO3a and overproduction of the Sirt1 protein. Treatment with levosimendan decreased cardiomyocyte apoptosis, senescence and LV hypertrophy and altered the gene expression profile in GK rat myocardium. The findings indicate that impaired cardioprotection via Akt FOXO3a and p38 MAPK is associated with increased apoptosis, whereas Sirt1 functions in counteracting apoptosis and the development of LV hypertrophy in the GK rat myocardium. Overall, levosimendan treatment protects against post-MI ventricular remodelling and alters the gene expression profile in the GK rat myocardium.
Resumo:
Background When we are viewing natural scenes, every saccade abruptly changes both the mean luminance and the contrast structure falling on any given retinal location. Thus it would be useful if the two were independently encoded by the visual system, even when they change simultaneously. Recordings from single neurons in the cat visual system have suggested that contrast information may be quite independently represented in neural responses to simultaneous changes in contrast and luminance. Here we test to what extent this is true in human perception. Methodology/Principal Findings Small contrast stimuli were presented together with a 7-fold upward or downward step of mean luminance (between 185 and 1295 Td, corresponding to 14 and 98 cd/m2), either simultaneously or with various delays (50–800 ms). The perceived contrast of the target under the different conditions was measured with an adaptive staircase method. Over the contrast range 0.1–0.45, mainly subtractive attenuation was found. Perceived contrast decreased by 0.052±0.021 (N = 3) when target onset was simultaneous with the luminance increase. The attenuation subsided within 400 ms, and even faster after luminance decreases, where the effect was also smaller. The main results were robust against differences in target types and the size of the field over which luminance changed. Conclusions/Significance Perceived contrast is attenuated mainly by a subtractive term when coincident with a luminance change. The effect is of ecologically relevant magnitude and duration; in other words, strict contrast constancy must often fail during normal human visual behaviour. Still, the relative robustness of the contrast signal is remarkable in view of the limited dynamic response range of retinal cones. We propose a conceptual model for how early retinal signalling may allow this.
Resumo:
The analysis of lipid compositions from biological samples has become increasingly important. Lipids have a role in cardiovascular disease, metabolic syndrome and diabetes. They also participate in cellular processes such as signalling, inflammatory response, aging and apoptosis. Also, the mechanisms of regulation of cell membrane lipid compositions are poorly understood, partially because a lack of good analytical methods. Mass spectrometry has opened up new possibilities for lipid analysis due to its high resolving power, sensitivity and the possibility to do structural identification by fragment analysis. The introduction of Electrospray ionization (ESI) and the advances in instrumentation revolutionized the analysis of lipid compositions. ESI is a soft ionization method, i.e. it avoids unwanted fragmentation the lipids. Mass spectrometric analysis of lipid compositions is complicated by incomplete separation of the signals, the differences in the instrument response of different lipids and the large amount of data generated by the measurements. These factors necessitate the use of computer software for the analysis of the data. The topic of the thesis is the development of methods for mass spectrometric analysis of lipids. The work includes both computational and experimental aspects of lipid analysis. The first article explores the practical aspects of quantitative mass spectrometric analysis of complex lipid samples and describes how the properties of phospholipids and their concentration affect the response of the mass spectrometer. The second article describes a new algorithm for computing the theoretical mass spectrometric peak distribution, given the elemental isotope composition and the molecular formula of a compound. The third article introduces programs aimed specifically for the analysis of complex lipid samples and discusses different computational methods for separating the overlapping mass spectrometric peaks of closely related lipids. The fourth article applies the methods developed by simultaneously measuring the progress curve of enzymatic hydrolysis for a large number of phospholipids, which are used to determine the substrate specificity of various A-type phospholipases. The data provides evidence that the substrate efflux from bilayer is the key determining factor for the rate of hydrolysis.
Resumo:
Background: One of the major challenges in understanding enzyme catalysis is to identify the different conformations and their populations at detailed molecular level in response to ligand binding/environment. A detail description of the ligand induced conformational changes provides meaningful insights into the mechanism of action of enzymes and thus its function. Results: In this study, we have explored the ligand induced conformational changes in H. pylori LuxS and the associated mechanistic features. LuxS, a dimeric protein, produces the precursor (4,5-dihydroxy-2,3-pentanedione) for autoinducer-2 production which is a signalling molecule for bacterial quorum sensing. We have performed molecular dynamics simulations on H. pylori LuxS in its various ligand bound forms and analyzed the simulation trajectories using various techniques including the structure network analysis, free energy evaluation and water dynamics at the active site. The results bring out the mechanistic details such as co operativity and asymmetry between the two subunits, subtle changes in the conformation as a response to the binding of active and inactive forms of ligands and the population distribution of different conformations in equilibrium. These investigations have enabled us to probe the free energy landscape and identify the corresponding conformations in terms of network parameters. In addition, we have also elucidated the variations in the dynamics of water co-ordination to the Zn2+ ion in LuxS and its relation to the rigidity at the active sites. Conclusions: In this article, we provide details of a novel method for the identification of conformational changes in the different ligand bound states of the protein, evaluation of ligand-induced free energy changes and the biological relevance of our results in the context of LuxS structure-function. The methodology outlined here is highly generalized to illuminate the linkage between structure and function in any protein of known structure.
Resumo:
Although improved outcomes for children on peritoneal dialysis (PD) have been seen in recent years, the youngest patients continue to demonstrate inferior growth, more frequent infections, more neurological sequelae, and higher mortality compared to older children. Also, maintain-ing normal intravascular volume status, especially in anuric patients, has proven difficult. This study was designed to treat and monitor these youngest PD patients, which are relatively many due to the high prevalence of congenital nephrotic syndrome of the Finnish type (CNF, NPHS1) in Finland, with a strict protocol, to evaluate the results and to improve metabolic balance, growth, and development. A retrospective analysis of 23 children under two years of age at onset of PD, treated between 1995 and 2000, was performed to obtain a control population for our prospective PD study. Respectively, 21 patients less than two years of age at the beginning of PD were enrolled in prospective studies between 2001 and 2005. Medication for uremia and nutrition were care-fully adjusted during PD. Laboratory parameters and intravascular volume status were regu-larly analyzed. Growth was analyzed and compared with midparental height. In a prospective neurological study, the risk factors for development and the neurological development was determined. Brain images were surveyed. Hearing was tested. In a retrospective neurological study, the data of six NPHS1 patients with a congruent neurological syndrome was analyzed. All these patients had a serious dyskinetic cerebral palsy-like syndrome with muscular dysto-nia and athetosis (MDA). They also had a hearing defect. Metabolic control was mainly good in both PD patient groups. Hospitalization time shortened clearly. The peritonitis rate diminished. Hypertension was a common problem. Left ventricular hypertrophy decreased during the prospective study period. None of the patients in either PD group had pulmonary edema or dialysis-related seizures. Growth was good and catch-up growth was documented in most patients in both patient groups during PD. Mortality was low (5% in prospective and 9% in retrospective PD patients). In the prospective PD patient group 11 patients (52%) had some risk factor for their neuro-development originating from the predialysis period. The neurological problems, detected be-fore PD, did not worsen during PD and none of the patients developed new neurological com-plications during PD. Brain infarcts were detected in four (19%) and other ischemic lesions in three patients (14%). At the end of this study, 29% of the prospectively followed patients had a major impairment of their neurodevelopment and 43% only minor impairment. In the NPHS1+MDA patients, no clear explanation for the neurological syndrome was found. The brain MRI showed increased signal intensity in the globus pallidus area. Kernic-terus was contemplated to be causative in the hypoproteinemic newborns but it could not be proven. Mortality was as high as 67%. Our results for young PD patients were promising. Metabolic control was acceptable and growth was good. However, the children were significantly smaller when compared to their midparental height. Although many patients were found to have neurological impairment at the end of our follow-up period, PD was a safe treatment whereby the neurodevelopment did not worsen during PD.
Resumo:
Phlebiopsis gigantea has been for a long time known as a strong competitor against Heterobasidion annosum and intensively applied as a biological control agent on stump surfaces of Picea abies in Fennoscandia. However, the mechanism underlying its antagonistic activity is still unknown. A primary concern is the possible impact of P. gigantea treatment on resident non-target microbial biota of conifer stumps. Additional risk factor is the potential of P. gigantea to acquire a necrotrophic habit through adaptation to living wood tissues. This study focused on the differential screening of several P. gigantea isolates from diverse geographical sources as well as the use of breeding approach to enhance the biocontrol efficacy against H. annosum infection. The results showed a significant positive correlation between growth rate in wood and high biocontrol efficacy. Furthermore, with aid of breeding approach, several progeny strains were obtained that had better growth rate and control efficacy than parental isolates. To address the issue of the potential of P. gigantea to acquire necrotrophic capability, a combination of histochemical, molecular and transcript profiling (454 sequencing) were used to investigate the interactions between these two fungi and ten year old P. sylvestris seedlings. The results revealed that both P. gigantea and H. annosum provoked strong necrotic lesions, but after prolonged incubation, P. gigantea lesions shrank and ceased to expand further. Tree seedlings pre-treated with P. gigantea further restricted H. annosum-induced necrosis and had elevated transcript levels of genes important for lignification, cell death regulation and jasmonic acid signalling. These suggest that induced localized resistance is a contributory factor for the biocontrol efficacy of P.gigantea, and it has a comparatively limited necrotrophic capability than H. annosum. Finally, to investigate the potential impact of P. gigantea on the stump bacterial biota, 16S rDNA isolated from tissue samples from stumps of P. abies after 1-, 6- and 13-year post treatment was sequenced using bar-coded 454 Titanium pyrosequencing. Proteobacteria were found to be the most abundant at the initial stages of stump decay but were selectively replaced by Acidobacteria at advanced stages of the decay. Moreover, P. gigantea treatment significantly decreased the bacterial richness at initial decay stage in the stumps. Over time, the bacterial community in the stumps gradually recovered and the negative effects of P. gigantea was attenuated.
Resumo:
Various intrinsic and external factors are constantly attacking the cells causing damage to DNA and to other cellular structures. Cells in turn have evolved with different kinds of mechanisms to protect against the attacks and to repair the damage. Ultraviolet radiation (UVR) is one of the major environmental genotoxic carcinogens that causes inflammation, mutations, immunosuppression, accelerated aging of the skin and skin cancers. Epidermis is the outermost layer of the skin consisting mostly of keratinocytes, whose primary function is to protect the skin against e.g. UV radiation. LIM domain proteins are a group of proteins involved in regulation of cell growth, damage signalling, cell fate determination and signal transduction. Despite their two zinc fingers, LIM domains do not bind to DNA, but rather mediate protein-protein interactions and function as modular protein binding interfaces. We initially identified CSRP1 as UVR-regulated transcript by using expression profiling. Here we have further studied the regulation and function of CRP1, a representative of cysteine rich protein- family consisting of two LIM domains. We find that CRP1 is increased by UVR in primary human keratinocytes and in normal human skin fibroblasts. Ectopic expression of CRP1 protected the cells against UVR and provided a survival advantage, whereas silencing of CRP1 rendered the cells more photosensitive. Actinic keratosis is a premalignant lesion of skin caused by excess exposure to sunlight and sunburn, which may lead to formation of squamous cell carcinoma. The expression of CRP1 was increased in basal keratinocytes of Actinic keratosis patient specimens suggesting that CRP1 may be increased by constant exposure to UVR and may provide survival advantage for the cells also in vivo. In squamous cell carcinoma, CRP1 was only expressed in the fibroblasts surrounding the tumour. Moreover, we found that ectopic expression of CRP1 suppresses cell proliferation. Transforming growth factor beta (TGFbeta) is a multifunctional cytokine that regulates several functions in cell including growth, apoptosis and differentiation, and plays important roles in pathological disorders like cancer and fibrosis. We found that TGFbeta-signalling pathway regulates CRP1 at protein, but not at transcriptional level. The increase was mediated both through Smad and non-Smad signalling pathways involving MAPK/p38. Furthermore, we found that TGFbeta-mediated increase in CRP1 was associated with myofibroblast differentiation, and that CRP1 was significantly more expressed in idiopathic pulmonary fibrosis as compared to normal lung specimens. Since cell contractility is a distinct feature of myofibroblasts, and CRP1 is associated with actin cytoskeleton, we studied the role of CRP1 in cell contractility. CRP1 was found to localize to stress fibres that mediate contractility and to mediate myofibroblast contraction. These studies identify CRP1 as a stress responsive and cytokine regulated cytoskeletal protein that participates in pathological processes involved in fibrotic diseases and cancer.
Resumo:
Nybildning av blodkärl från tidigare existerande kärl, angiogenes, är ett väsentligt skede vid tumörtillväxt. Denna process regleras av bland annat tillväxtfaktorer, var av den vaskulära endoteliala tillväxtfaktorn har en central roll. Hämning av angiogenes kan ske antingen extracellulärt med hjälp av humaniserade monoklonala antikroppar eller intracellulärt med hjälp av småmolekylära hämmaren. Sunitinib är en småmolekylär multikinashämmare och inhiberar flera tyrosinkinasreceptorer som påverkar tumörtillväxten och metastasutvecklingen vid cancer. Sunitinibs främsta indikationer är gastrointestinala stromacellstumörer, metastaserad njurcellscancer och neuroendokrina tumörer i bukspottskörteln. Behandling med tyrosinkinashämmare orsakar biverkningar som hypertension, kardiotoxicitet och njursvikt, vilka antas bero på de hämmande effekterna på mål som inte är väsentliga för anti-cancer-aktiviteten (”off-target” biverkningar). Bland annat AMP-aktiverat proteinkinas (AMPK), ett kinas som upprätthåller metabolisk homeostas i hjärtat, inhiberas av sunitinib och antas framkalla kardiovaskulära biverkningar. För att reducera ”off-target” biverkningar strävar man till att hitta alternativ som minskar de skadliga effekterna utan att den terapeutiska aktiviteten försvagas. Bland annat ett begränsat kaloriintag har uppvisat skyddande effekt på hjärtat via mekanismer sammankopplade till ökad resistens mot oxidativ stress, inflammation och mitokondriell dysfunktion, samt avtagande apoptos och autofagi. Detta sker delvis genom aktivering av enzymet Sirt1. Syftet med den här studien var att undersöka ifall kaloribegränsning skyddar mot kardiovaskulära och renala biverkningar inducerade av sunitinib hos råttor. Dessutom studerades vilka signalkedjor i cellen som medverkar. I studien användes 40 spontant hypertensiva råttor samt 10 normotensiva Wistar-Kyoto råttor. Försöksdjuren delades in i fem grupper beroende på behandling; I WKY kontroll, II SHR kontroll, III SHR + kaloribegränsning 70 %, IV SHR + sunitinib 3 mg/kg och V SHR + sunitinib 3 mg/kg + kaloribegränsning 70 %. Behandlingsperioden var åtta veckor. Blodtrycket mättes varje vecka med svansmanchett, urinutsöndringen undersöktes vecka 4 och vecka 8 med metabolismburar, ultraljudsundersökning av hjärtat utfördes sista veckan och blodkärlens respons till acetylkolin och natriumnitroprussid studerades i samband med avlivning. Proteinerna Sirt1 och AMPK analyserades i hjärtat med Western blotting samt förekomsten av makrofagmarkören ED1 i njurarna med immunhistokemi. Studien visade att sunitinibdosen 3 mg/kg är mycket väl tolererbar hos råttor eftersom sunitinib inte orsakade högre blodtryck, kraftigare hypertrofi eller mer omfattande njurskada jämfört med obehandlade SHR- grupper. Utgående från resultaten kan man också konstatera att kaloribegränsningen har positiva kardiovaskulära effekter.
Resumo:
Parkinson´s Disease (PD) is a neurodegenerative movement disorder resulting from loss of dopaminergic (DA) neurons in substantia nigra (SN). Possible causative treatment strategies for PD include neurotrophic factors, which protect and in some cases restore the function of dopaminergic neurons. Glial cell line-derived neurotrophic factor (GDNF) family of neurotrophic factors have been to date the most promising candidates for treatment of PD, demonstrating both neuroprotective and neurorestorative properties. We have investigated the role of GDNF in the rodent dopaminergic system and its possible crosstalk with other growth factors. We characterized the GDNF-induced gene expression changes by DNA microarray analysis in different neuronal systems, including in vitro cultured Neuro2A cells treated with GDNF, as well as midbrains from GDNF heterozygous (Hz) knockout mice. These microarray experiments, resulted in the identification of GDNF-induced genes, which were also confirmed by other methods. Further analysis of the dopaminergic system of GDNF Hz mice demonstrated about 40% reduction in GDNF levels, revealed increased intracellular dopamine concentrations and FosB/DeltaFosB expression in striatal areas. These animals did not show any significant changes in behavioural analysis of acute and repeated cocaine administration on locomotor activity, nor did they exhibit any changes in dopamine output following treatment with acute cocaine. We further analysed the significance of GDNF receptor RET signalling in dopaminergic system of MEN2B knock-in animals with constitutively active Ret. The MEN2B animals showed a robust increase in extracellular dopamine and its metabolite levels in striatum, increased tyrosine hydroxylase (TH) and dopamine transporter (DAT) protein levels by immunohistochemical staining and Western blotting, as well as increased Th mRNA levels in SN. MEN2B mice had increased number of DA neurons in SN by about 25% and they also exhibited increased sensitivity to the stimulatory effects of cocaine. We also developed a semi-throughput in vitro micro-island assay for the quantification of neuronal survival and TH levels by computer-assisted methodology from limited amounts of tissue. This assay can be applied for the initial screening for dopaminotrophic molecules, as well as chemical drug library screening. It is applicable to any neuronal system for the screening of neurotrophic molecules. Since our microarray experiments revealed possible GDNF-VEGF-C crosstalk we further concentrated on studying the neurotrophic effects of VEGF-C. We showed that VEGF-C acts as a neurotrophic molecule for the DA neurons both in vitro and in vivo, however without additive effect when used together with GDNF. The neuroprotective effect for VEGF-C in vivo in rat 6-OHDA model of PD was demonstrated. The possible signalling mechanisms of VEGF-C in the nervous system were investigated - infusion of VEGF-C to rat brain induced ERK activation, however no direct activation of RET signalling in vitro was found. VEGF-C treatment of rat striatum lead to up-regulation of VEGFR-1-3, indicating that VEGF-C can regulate the expression level of its own receptor. VEGF-C dopaminotrophic activity in vivo was further supported by increased vascular tissue in the neuroprotection experiments.
Resumo:
Worldwide and notably in the developed countries, cancer is an increasing cause of morbidity and mortality, being the second most common cause of death after ischemic heart disease. Now and in the future new cancer cases need to be diagnosed earlier. Prognostic factors may be helpful in recognizing and handling those patients who need more aggressive therapy, and it is also desirable to predict treatment response accurately. Cancerous inhibitor of protein phosphatase 2A (CIP2A) is an oncoprotein predominantly expressed in malignant tissues and inhibiting protein phosphatase 2A (PP2A) activity; it is a promising target for cancer therapy. The aim of this thesis was to evaluate the prognostic role of CIP2A in solid cancers, and for this purpose to explore expression of CIP2A, and investigating regulation of CIP2A in order to gain insight into signalling pathways leading to alteration in prognosis. Patients diagnosed with gastric, serous ovarian, tongue, or colorectal cancer at Helsinki University Central Hospital were included. Tumour tissue microarrays assembled from specimens from these patients were prepared and stained immunohistochemically for CIP2A protein expression. Associations with clinicopathologic parameters and other biomarkers were explored, and survival analyses were done according to the Kaplan-Meier method. Study of the role of CIP2A in intracellular signalling in vitro involved gastric, ovarian, and tongue cancer cell lines. We found CIP2A to be highly expressed in gastric, ovarian, tongue, and colorectal cancer specimens. CIP2A was associated with clinicopathologic parameters characterizing an aggressive disease, namely advanced stage, high grade, p53 immunopositivity, and high proliferation index. CIP2A led to recognition of gastric, ovarian, and tongue cancer patients with poor prognosis, however, with a cancer type-specific cut-off level for prognostic significance. In tongue cancer, it served as an independent prognostic marker. In contrast, in colorectal cancer, CIP2A provided no prognostic value. In cancer cell lines, CIP2A was highly expressed at both protein and mRNA levels, and promoted cell proliferation and anchorage-independent growth. In gastric cancer, we demonstrated with a MYCER construct in mouse embryo fibroblasts that activation of MYC led to increased CIP2A mRNA expression, and hence we suggested that a positive feedback mechanism between CIP2A and MYC may potentiate and prolong the oncogenic activity of these proteins. We demonstrated in ovarian cancer an association between CIP2A and EGFR protein overexpression and EGFR gene amplification. In ovarian and tongue cancer cells we showed that depletion of EGFR downregulates CIP2A expression. In conclusion, high CIP2A expression occurred frequently among patients with aggressive disease. CIP2A may serve as a prognostic marker in gastric, ovarian, and tongue cancer and thus may help in tailoring therapy for cancer patients. The positive feedback mechanism between CIP2A and MYC, as well as the positive regulation of CIP2A by EGFR, are a few signalling pathways regulating and regulated by CIP2A. These and other mechanisms need to be studied further, however. CIP2A is a potential target for therapy, and its potential role as predictive marker and as a tumour marker in serum requires exploration.