985 resultados para Hull cell
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Engenharia Clínica)
Resumo:
Dissertação de mestrado em Plant Molecular Biology, Biotechnology and Bioentrepreneurship
Resumo:
Dissertação de mestrado em Bioquímica Aplicada – Biomedicina
Resumo:
Purpose: To determine the relationship of goblet cell density (GCD) with tear function and ocular surface physiology. Methods: This was a cross-sectional study conducted in 35 asymptomatic subjects with mean age 23.8±3.6 years. Tear film assessment, conjunctiva and cornea examination were done in each subject. Conjunctival impression cytology was performed by applying Nitrocellulose Millipore MFTM-Membrane filter over the superior bulbar conjunctiva. The filter paper was than fixed with 96% ethanol and stained with Periodic Acid Schiff, Hematoxylin and Eosin. GCD was determined by optical microscopy. Relation between GCD and Schirmer score, tear break-up time (TBUT), bulbar redness, limbal redness and corneal staining was determined. Results: The mean GCD was 151±122 cells/mm2. GCD was found higher in eyes with higher Schirmer score but it was not significant (p = 0.75). There was a significant relationship ofGCDwith TBUT (p = 0.042). GCD was not correlated with bulbar redness (p = 0.126), and limbal redness (p = 0.054) as well as corneal staining (p = 0.079). No relationship of GCD with age and gender of the subjects (p > 0.05) was observed. Conclusion: GCD was found correlated with TBUT but no significant correlation was found with the aqueous portion of the tear, limbal as well as bulbar redness and corneal staining.
Resumo:
The success of synthetic bone implants requires good interface between the material and the host tissue. To study the biological relevance of fi bronectin (FN) density on the osteogenic commitment of human bone marrow mesenchymal stem cells (hBMMSCs), human FN was adsorbed in a linear density gradient on the surface of PCL. The evolution of the osteogenic markers alkaline phosphatase and collagen 1 alpha 1 was monitored by immunohistochemistry, and the cytoskeletal organization and the cell-derived FN were assessed. The functional analysis of the gradient revealed that the lower FN-density elicited stronger osteogenic expression and higher cytoskeleton spreading, hallmarks of the stem cell commitment to the osteoblastic lineage. The identifi cation of the optimal FN density regime for the osteogenic commitment of hBM-MSCs presents a simple and versatile strategy to signifi cantly enhance the surface properties of polycaprolactone as a paradigm for other synthetic polymers intended for bone-related applications.
Resumo:
Cell sheet (CS) engineering, taking advantage of cellular self-matrix organized as in native tissue, has been largely explored, including by us, for different purposes [1â 3]. Herein we propose for the ï¬ rst time, the use of human adipose stem cells (hASCs)-derived CS to create adipose tissue analogues with different levels of maturation. hASCs were cultured on UpCellTM thermo-responsive dishes for 1, 3 and 5 days under basal conditions previously established by us [3]. The inï¬ uence of pre-differentiation time and respective cell number, over CS stability and differentiation was assessed. Mechanically robust CS were only obtained with 5 days pre-differentiation period. Adipogenesis was followed along the culture assessing the variation of expression of mesenchymal (CD73, CD105 but not CD90) and adipogenic (PPARg, FABP4 and LPL) markers by ï¬ ow cytometry, immunocytochemistry and RT-PCR. Increased ratio of differentiated cells was achieved for longer pre-differentiation periods, while maturation degree was modulated by the maintenance medium. Independently of the overall CS differentiation/maturation level, 3D constructs were fabricated by stacking and further culturing 3 CS. Thus, by varying the culture conditions, different 3D adipose tissue-like microenvironments were recreated, enabling future development of new tissue engineering strategies, as well as further study of adipose tissue role in the regeneration of different tissues.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Engenharia Clínica)
Resumo:
OBJECTIVE: This study aims to evaluate the citotoxic activity of two commonly used anti-depressants: paroxetine and bupropion. We also evaluated the in vitro natural killer activity (NKA) after incubating the blood samples with the antidepressants. METHODS: Peripheral blood samples from 15 healthy volunteers were collected and the mononuclear cells (PBMCs) were isolated and incubated for 24h with (or without = control cells) paroxetine and bupropion, in concentrations of 30, 100 and 1000 ng/ml. After the incubation period in both groups, the amount of dead cells was calculated using trypam blue technique. NKA was evaluated using the classic51Cr release assay. CONCLUSIONS: PBMCs dead cells occurred in both groups and in proportion to all pharmacological concentrations. Nevertheless, the NKA was not affected, even with the reduction in the number of effective cells.
Resumo:
Programa Doutoral em Engenharia Biomédica
Resumo:
Renal cell tumors (RCTs) are the most lethal of the common urological cancers. The widespread use of imaging entailed an increased detection of small renal masses, emphasizing the need for accurate distinction between benign and malignant RCTs, which is critical for adequate therapeutic management. Histone methylation has been implicated in renal tumorigenesis, but its potential clinical value as RCT biomarker remains mostly unexplored. Hence, the main goal of this study was to identify differentially expressed histone methyltransferases (HMTs) and histone demethylases (HDMs) that might prove useful for RCT diagnosis and prognostication, emphasizing the discrimination between oncocytoma (a benign tumor) and renal cell carcinoma (RCC), especially the chromophobe subtype (chRCC). We found that the expression levels of three genes-SMYD2, SETD3, and NO66-was significantly altered in a set of RCTs, which was further validated in a large independent cohort. Higher expression levels were found in RCTs compared to normal renal tissues (RNTs) and in chRCCs comparatively to oncocytomas. SMYD2 and SETD3 mRNA levels correlated with protein expression assessed by immunohistochemistry. SMYD2 transcript levels discriminated RCTs from RNT, with 82.1% sensitivity and 100% specificity (AUC=0.959), and distinguished chRCCs from oncocytomas, with 71.0% sensitivity and 73.3% specificity (AUC: 0.784). Low expression levels of SMYD2, SETD3, and NO66 were significantly associated with shorter disease-specific and disease-free survival, especially in patients with non-organ confined tumors. We conclude that expression of selected HMTs and HDMs might constitute novel biomarkers to assist in RCT diagnosis and assessment of tumor aggressiveness.
Resumo:
Spinal cord injury (SCI) is a central nervous system- (CNS-) related disorder for which there is yet no successful treatment. Within the past several years, cell-based therapies have been explored for SCI repair, including the use of pluripotent human stem cells, and a number of adult-derived stem and mature cells such as mesenchymal stem cells, olfactory ensheathing cells, and Schwann cells. Although promising, cell transplantation is often overturned by the poor cell survival in the treatment of spinal cord injuries. Alternatively, the therapeutic role of different cells has been used in tissue engineering approaches by engrafting cells with biomaterials. The latter have the advantages of physically mimicking the CNS tissue, while promoting a more permissive environment for cell survival, growth, and differentiation. The roles of both cell- and biomaterial-based therapies as single therapeutic approaches for SCI repair will be discussed in this review. Moreover, as the multifactorial inhibitory environment of a SCI suggests that combinatorial approaches would be more effective, the importance of using biomaterials as cell carriers will be herein highlighted, as well as the recent advances and achievements of these promising tools for neural tissue regeneration.
Resumo:
OBJECTIVE: Anatomical and functional assessment of the heart through Doppler and echocardiography in patients with cell anemia (SCA). METHODS: Twenty-five patients with SCA and ages ranging from 14 to 45 years were prospectively studied in a comparison with 25 healthy volunteers. All of them underwent clinical and laboratory evaluation and Doppler echocardiography as well.The measurements were converted into body surface indices. RESULTS: There were increases in all chamber diameters and left ventricle (LV) mass of the SCA patients. It was characterised an eccentric hypertrophy of the left ventricle. The preload was increased (left ventricle end-diastolic volume) and the afterload was decreased (diastolic blood pressure, peripheral vascular resistance and end-systolic parietal stress ESPS). The cardiac index was increased due to the stroke volume. The ejection fraction and the percentage of the systolic shortening , as well as the systolic time intervals of the LV were equivalent. The isovolumetric contraction period of the LV was increased. The mitral E-septum distance and the end-systolic volume index (ESVi) were increased. The ESPS/ESVi ratio,a loading independent parameter, was decreased in SCA, suggesting systolic dysfunction. No significant differences in the diastolic function or in the pulmonary pressure occurred. CONCLUSION: Chamber dilations, eccentric hypertrophy and systolic dysfunction confirm the evidence of the literature in characterizing a sickle cell anemia cardiomyopathy.
Resumo:
O treino competitivo envolve exercício intenso e prolongado, capaz de modular o número e actividade das células imunitárias. Quando demasiado exigente poderá induzir fadiga e aumentar a susceptibilidade a doenças. Esta dissertação apresenta três estudos desenvolvidos no âmbito da Imunologia do Exercício, considerando a análise da resposta celular imunitária sistémica aguda e crónica ao exercício aplicada em situações reais do treino competitivo de natação, controlando factores passíveis de influenciar esta resposta. Pretendeu-se avaliar a resposta imunitária a uma sessão de treino prolongada e intensa, durante as 24h de recuperação (Estudo 1) e a uma época de treino com sete meses (Estudo 2), e estudar a influência de um macrociclo de treino de quatro meses sobre a resposta imunitária à mesma sessão de treino e período de recuperação (Estudo 3), controlando sexo, fases do ciclo menstrual, maturidade, escalão, especialidade, performance, cargas de treino e sintomas respiratórios superiores (URS). A sessão de treino induziu a diminuição da vigilância imunitária adquirida imediatamente e, pelo menos nas 2h seguintes. Juvenis e seniores recuperaram totalmente 24h depois, mas não os juniores, reforçando a ideia da existência de uma janela aberta para a infecção após exercícios prolongados e intensos e sugerindo uma recuperação menos eficiente para os juniores. No período de treino mais intenso da época observou-se uma imunodepressão e maior prevalência de URS. No final da época, a imunidade inata diminuiu aparentando maior sensibilidade aos efeitos cumulativos da carga de treino, enquanto a imunidade adquirida parece ter recuperado após o taper. O macrociclo de treino atenuou a resposta imunitária à sessão de treino e aumentou o período de janela aberta às infecções (efeitos mais acentuados nos adolescentes). Os resultados evidenciam a importância de controlar alterações imunitárias durante a época competitiva, especialmente em períodos de treino intenso e quando se realizam sessões de treino intensas consecutivas com recuperações inferiores a 24h.
Resumo:
La motilidad celular orientada (o mecanismo quimiotáctico de orientación), es una respuesta celular a señales moleculares de su micro-ambiente necesaria para modular la distribución celular en sitios específicos y con elevada precisión. Nuestra hipótesis establece que la migración orientada de células neurales es regulada por gradientes de concentración de moléculas solubles liberadas por sus regiones "blanco". Este proyecto es continuación del estudio de la quimiotaxis de células de cresta neural (CCN) y de neuronas ventriculares (NV) inducida respectivamente por factores difusibles de la región del futuro ganglio ciliar y del bulbo olfatorio.En el sistema de CCN, hemos caracterizado como moléculas quimiotácticas a la quimioquina Stromal Cell-Derived Factor-1, y los factores tróficos Stem Cell Factor y Neurotrophic Factor-3, habiendo determinado la expresión de sus respectivos receptores CXCR4, TrkC y p75 en la población de CCN mesencefálicas de ambrión de pollo. Actualmente, estamos desarrollando experimentos con el Ciliary Neurotrophic Factor y factores de la familia Bone Morphogenetic Proteins. Además de la estrategia experimental in vitro, hemos determinado en el embrión entero la expresión de las moléculas quimioatractantes mediante hibridación in situ del ARNm y la presencia de las respectivas proteínas mediante inmunocitoquímica. En el sistema de NV, estamos analizando la motilidad celular en relación con moléculas liberadas por el bulbo olfatorio. En los dos sistemas biológicos, estamos analizando elementos de la transducción de señales y cambios en el citoesqueleto, en ambos casos asociados con la respuesta temprana en la orientación quimiotáctica de la célula. Asimismo, en ambos sistemas biológicos, evaluamos los efectos del etanol sobre la migración y distribución celular, en condiciones equivalentes a las que inducen el Sindrome Fetal Alcohólico en mamíferos.En base a resultados ya obtenidos en experimentos in vitro, en la presente etapa intentaremos su caracterización in vivo mediante el bloqueo funcional de las moléculas quimiotácticas (y/o sus receptores) sobre embriones enteros, mediante silenciamiento con ARNsi (o morfolinos específicos) mediante electroporación, y posterior determinación de la distribución celular mediante marcadores específicos anti-CCN (o lipofílicos de tipo DiI).Los resultados permitirán mejorar el conocimiento del mecanismo de la migración celular orientada y aportar al diseño de recursos diagnósticos, terapéuticos o de control de anomalías embrionarias o patologías tumorales por mala distribución celular como las Neurocristopatías, o inducidas por tóxicos exógenos como el Sindrome Fetal Alcohólico.