999 resultados para Critical strip
Rapid growth cost in “all-fish” growth hormone gene transgenic carp: Reduced critical swimming speed
Resumo:
Evidence has accumulated that there is a trade-off between benefits and costs associated with rapid growth. A trade-off between growth rates and critical. swimming speed (U-crit) had been also reported to be common in teleost fish. We hypothesize that growth acceleration in the F-3 generation of "all-fish" growth hormone gene (GH) transgenic common carp (Cyprinus carpio L.) would reduce the swimming abilities. Growth and swimming performance between transgenic fish and non-transgenic controls were) compared. The results showed that transgenic fish had a mean body weight 1.4-1.9-fold heavier, and a mean specific growth rate (SGR) value 6%-10% higher than the controls. Transgenic fish, however, had a mean absolute U-crit (cm/s) value 22% or mean relative Ucrit (BL/s) value 24% lower than the controls. It suggested that fast-growing "all-fish" GH-transgenic carp were inferior swimmers. It is also supported that there was a trade-off between growth rates and swimming performance, i.e. faster-growing individuals had lower critical swimming speed.
Resumo:
This paper presents a review of the criticisms of system dynamics and assesses the validity of these against recent findings in the field. The authors survey the literature critical of system dynamics and review their criticisms using the current understandings in the system dynamics field. This work suggests that there are some pertinent criticisms that have been aimed at system dynamics. These include the apparent disagreements regarding the role of historical data in model confidence building, system dynamics' reductionist perspective and how system dynamics addresses plurality and hierarchy. Overcoming these criticisms require the ever present need for education, communication and theoretical work. It is hoped this paper will strengthen the mandate of system dynamics in the eyes of its critics, assist and improve the field and its general acceptance as a tool of analysis.
Resumo:
Using the transfer matrix renormalization group (TMRG) method, we study the connection between the first derivative of the thermal average of driving-term Hamiltonian (DTADH) and the trace of quantum critical behaviors at finite temperatures. Connecting with the exact diagonalization method, we give the phase diagrams and analyze the properties of each phase for both the ferromagnetic and anti-ferromagnetic frustrated J(3) anisotropy diamond chain models. The finite-temperature scaling behaviors near the critical regions are also investigated. Further, we show the critical behaviors driven by external magnetic field, analyze the formation of the 1/3 magnetic plateau and the influence of different interactions on those critical points for both the ferrimagnetic and anti-ferromagnetic distorted diamond chains.
Resumo:
Ga1-xMnxAs films with exceptionally high saturation magnetizations of approximate to 100 emu/cm(3) corresponding to effective Mn concentrations of x(eff)approximate to 0.10 still have a Curie temperature T-C smaller than 195 K contradicting mean-field predictions. The analysis of the critical exponent beta of the remnant magnetization-beta = 0.407(5)-in the framework of the models for disordered/amorphous ferromagnets suggests that this limit on T-C is intrinsic and due to the short range of the ferromagnetic interactions resulting from the small mean-free path of the holes. This result questions the perspective of room-temperature ferromagnetism in highly doped GaMnAs.
Resumo:
SiO2-TiO2 sol-gel films are deposited on SiO2/Si by dip-coating technique. The SiO2-TiO2 strips are fabricated by laser direct writing using all ytterbium fiber laser and followed by chemical etching. Surface structures, morphologies and roughness of the films and strips are characterized. The experimental results demonstrate that the SiO2-TiO2 sol-gel film is loose in Structure and a shrinkage concave groove forms if the film is irradiated by laser beam. The surface roughness of both non-irradiated and laser irradiated areas increases with the chemical etching time. But the roughness of laser irradiated area increases more than that of non-irradiated area under the same etching time. After being etched for 28 s, the surface roughness value of the laser irradiated area increases from 0.3 nm to 3.1 nm.
Resumo:
We study the effects of the Dzyaloshinski-Moriya (DM) anisotropic interaction on the ground-state properties of the Heisenberg XY spin chain by means of the fidelity susceptibility, order parameter, and entanglement entropy. Our results show that the DM interaction could influence the distribution of the regions of quantum phase transitions and cause different critical regions in the XY spin model. Meanwhile, the DM interaction has effective influence on the degree of entanglement of the system and could be used to increase the entanglement of the spin system.
Resumo:
InGaN/GaN multiquantum-well (MQW) structures grown by metalorganic chemical-vapor deposition on n-type GaN and capped by p-type GaN were investigated by cross-sectional transmission electron microscopy, double crystal x-ray diffraction, and temperature-dependent photoluminescence. For the sample with strained-layer thicknesses greater than the critical thicknesses, a high density of pure edge type threading dislocations generated from MQW layers and extended to the cap layer was observed. These dislocations result from a relaxation of the strained layers when their thicknesses are beyond the critical thicknesses. Because of indium outdiffusion from the well layers due to the anneal effect of Mg-doped cap layer growth and defects generated from strain relaxation, the PL emission peak was almost depressed by the broad yellow band with an intensity maximum at 2.28 eV. But for the sample with strained-layer thicknesses less than the critical thicknesses, it has no such phenomenon. The measured critical thicknesses are consistent with the calculated values using the model proposed by Fischer, Kuhne, and Richter. (C) 2004 American Institute of Physics.
Resumo:
Test strip detectors of 125 mu m, 500 mu m, and 1 mm pitches with about 1 cm(2) areas have been made on medium-resistivity silicon wafers (1.3 and 2.7 k Ohm cm). Detectors of 500 mu m pitch have been tested for charge collection and position precision before and after neutron irradiation (up to 2 x 10(14) n/cm(2)) using 820 and 1030 nm laser lights with different beam-spot sizes. It has been found that for a bias of 250 V a strip detector made of 1.3 k Ohm cm (300 mu m thick) can be fully depleted before and after an irradiation of 2 x 10(14) n/cm(2). For a 500 mu m pitch strip detector made of 2.7 k Ohm cm tested with an 1030 nm laser light with 200 mu m spot size, the position reconstruction error is about 14 mu m before irradiation, and 17 mu m after about 1.7 x 10(13) n/cm(2) irradiation. We demonstrated in this work that medium resistivity silicon strip detectors can work just as well as the traditional high-resistivity ones, but with higher radiation tolerance. We also tested charge sharing and position reconstruction using a 1030 nm wavelength (300 mu m absorption length in Si at RT) laser, which provides a simulation of MIP particles in high-physics experiments in terms of charge collection and position reconstruction, (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Test strip detectors of 125 mu m, 500 mu m, and 1 mm pitches with about 1 cm(2) areas have been made on medium-resistivity silicon wafers (1.3 and 2.7 k Ohm cm). Detectors of 500 mu m pitch have been tested for charge collection and position precision before and after neutron irradiation (up to 2 x 10(14) n/cm(2)) using 820 and 1030 nm laser lights with different beam-spot sizes. It has been found that for a bias of 250 V a strip detector made of 1.3 k Ohm cm (300 mu m thick) can be fully depleted before and after an irradiation of 2 x 10(14) n/cm(2). For a 500 mu m pitch strip detector made of 2.7 k Ohm cm tested with an 1030 nm laser light with 200 mu m spot size, the position reconstruction error is about 14 mu m before irradiation, and 17 mu m after about 1.7 x 10(13) n/cm(2) irradiation. We demonstrated in this work that medium resistivity silicon strip detectors can work just as well as the traditional high-resistivity ones, but with higher radiation tolerance. We also tested charge sharing and position reconstruction using a 1030 nm wavelength (300 mu m absorption length in Si at RT) laser, which provides a simulation of MIP particles in high-physics experiments in terms of charge collection and position reconstruction, (C) 1999 Elsevier Science B.V. All rights reserved.