858 resultados para [JEL:C5] Mathematical and Quantitative Methods - Econometric Modeling
Resumo:
Computational models represent a highly suitable framework, not only for testing biological hypotheses and generating new ones but also for optimising experimental strategies. As one surveys the literature devoted to cancer modelling, it is obvious that immense progress has been made in applying simulation techniques to the study of cancer biology, although the full impact has yet to be realised. For example, there are excellent models to describe cancer incidence rates or factors for early disease detection, but these predictions are unable to explain the functional and molecular changes that are associated with tumour progression. In addition, it is crucial that interactions between mechanical effects, and intracellular and intercellular signalling are incorporated in order to understand cancer growth, its interaction with the extracellular microenvironment and invasion of secondary sites. There is a compelling need to tailor new, physiologically relevant in silico models that are specialised for particular types of cancer, such as ovarian cancer owing to its unique route of metastasis, which are capable of investigating anti-cancer therapies, and generating both qualitative and quantitative predictions. This Commentary will focus on how computational simulation approaches can advance our understanding of ovarian cancer progression and treatment, in particular, with the help of multicellular cancer spheroids, and thus, can inform biological hypothesis and experimental design.
Resumo:
Objective This article explores patterns of terrorist activity over the period from 2000 through 2010 across three target countries: Indonesia, the Philippines and Thailand. Methods We use self-exciting point process models to create interpretable and replicable metrics for three key terrorism concepts: risk, resilience and volatility, as defined in the context of terrorist activity. Results Analysis of the data shows significant and important differences in the risk, volatility and resilience metrics over time across the three countries. For the three countries analysed, we show that risk varied on a scale from 0.005 to 1.61 “expected terrorist attacks per day”, volatility ranged from 0.820 to 0.994 “additional attacks caused by each attack”, and resilience, as measured by the number of days until risk subsides to a pre-attack level, ranged from 19 to 39 days. We find that of the three countries, Indonesia had the lowest average risk and volatility, and the highest level of resilience, indicative of the relatively sporadic nature of terrorist activity in Indonesia. The high terrorism risk and low resilience in the Philippines was a function of the more intense, less clustered pattern of terrorism than what was evident in Indonesia. Conclusions Mathematical models hold great promise for creating replicable, reliable and interpretable “metrics” to key terrorism concepts such as risk, resilience and volatility.
Resumo:
The terrorist attacks in the United States on September 11, 2001 appeared to be a harbinger of increased terrorism and violence in the 21st century, bringing terrorism and political violence to the forefront of public discussion. Questions about these events abound, and “Estimating the Historical and Future Probabilities of Large Scale Terrorist Event” [Clauset and Woodard (2013)] asks specifically, “how rare are large scale terrorist events?” and, in general, encourages discussion on the role of quantitative methods in terrorism research and policy and decision-making. Answering the primary question raises two challenges. The first is identify- ing terrorist events. The second is finding a simple yet robust model for rare events that has good explanatory and predictive capabilities. The challenges of identifying terrorist events is acknowledged and addressed by reviewing and using data from two well-known and reputable sources: the Memorial Institute for the Prevention of Terrorism-RAND database (MIPT-RAND) [Memorial Institute for the Prevention of Terrorism] and the Global Terror- ism Database (GTD) [National Consortium for the Study of Terrorism and Responses to Terrorism (START) (2012), LaFree and Dugan (2007)]. Clauset and Woodard (2013) provide a detailed discussion of the limitations of the data and the models used, in the context of the larger issues surrounding terrorism and policy.
Resumo:
In this paper, a novel data-driven approach to monitoring of systems operating under variable operating conditions is described. The method is based on characterizing the degradation process via a set of operation-specific hidden Markov models (HMMs), whose hidden states represent the unobservable degradation states of the monitored system while its observable symbols represent the sensor readings. Using the HMM framework, modeling, identification and monitoring methods are detailed that allow one to identify a HMM of degradation for each operation from mixed-operation data and perform operation-specific monitoring of the system. Using a large data set provided by a major manufacturer, the new methods are applied to a semiconductor manufacturing process running multiple operations in a production environment.
Resumo:
"This collection of papers offers a broad synopsis of state-of-the-art mathematical methods used in modeling the interaction between tumors and the immune system. These papers were presented at the four-day workshop on Mathematical Models of Tumor-Immune System Dynamics held in Sydney, Australia from January 7th to January 10th, 2013. The workshop brought together applied mathematicians, biologists, and clinicians actively working in the field of cancer immunology to share their current research and to increase awareness of the innovative mathematical tools that are applicable to the growing field of cancer immunology. Recent progress in cancer immunology and advances in immunotherapy suggest that the immune system plays a fundamental role in host defense against tumors and could be utilized to prevent or cure cancer. Although theoretical and experimental studies of tumor-immune system dynamics have a long history, there are still many unanswered questions about the mechanisms that govern the interaction between the immune system and a growing tumor. The multidimensional nature of these complex interactions requires a cross-disciplinary approach to capture more realistic dynamics of the essential biology. The papers presented in this volume explore these issues and the results will be of interest to graduate students and researchers in a variety of fields within mathematical and biological sciences."--Publisher website
Resumo:
Qualitative aspects of verbal fluency may be more useful in discerning the precise cause of any quantitative deficits in phonetic or category fluency, especially in the case of mild cognitive impairment (MCI), a possible intermediate stage between normal performance and Alzheimer's disease (AD). The aim of this study was to use both quantitative and qualitative (switches and clusters) methods to compare the phonetic and category verbal fluency performance of elderly adults with no cognitive impairment (n = 51), significant memory impairment (n = 16), and AD (n = 16). As expected, the AD group displayed impairments in all quantitative and qualitative measures of the two fluency tasks relative to their age- and education-matched peers. By contrast, the amnestic MCI group produced fewer animal names on the semantic fluency task than controls and showed normal performance on the phonetic fluency task. The MCI group's inferior category fluency performance was associated with a deficit in their category-switching rate rather than word cluster size. Overall, the results indicate that a semantic measure such as category fluency when used in conjunction with a test of episodic memory may increase the sensitivity for detecting preclinical AD. Future research using external cues and other measures of set shifting capacity may assist in clarifying the origin of the amnestic MCI-specific category-switching deficiency. Copyright
Resumo:
This workshop will snapshot Bourdieu's sociology. In recognition of Bourdieu's work as a powerful theoretical instrument to speculate the reproduction of social orders and cultural values, the workshop will firstly discuss the core concepts of habitus, capital, and field – the foundational triad of Bourdieu's sociology. Although Bourdieu's original work was built on some quantitative studies, his sociology has been largely qualitatively used in education research. Different from the bulk of extant research, the workshop will secondly showcase some quantitative and mixed methods research that uses a Bourdieusian framework. Mindful of such a framework helping understand social practice at a macro level, the workshop will then make an attempt to think through the macro and the micro by weaving together Bourdieu's sociology with Garfinkel's ethnomethodology. The workshop will conclude with some reflections and communications in terms of how to better realise the full value of Bourdieu in education research.
Resumo:
Miniaturization of analytical instrumentation is attracting growing interest in response to the explosive demand for rapid, yet sensitive analytical methods and low-cost, highly automated instruments for pharmaceutical and bioanalyses and environmental monitoring. Microfabrication technology in particular, has enabled fabrication of low-cost microdevices with a high degree of integrated functions, such as sample preparation, chemical reaction, separation, and detection, on a single microchip. These miniaturized total chemical analysis systems (microTAS or lab-on-a-chip) can also be arrayed for parallel analyses in order to accelerate the sample throughput. Other motivations include reduced sample consumption and waste production as well as increased speed of analysis. One of the most promising hyphenated techniques in analytical chemistry is the combination of a microfluidic separation chip and mass spectrometer (MS). In this work, the emerging polymer microfabrication techniques, ultraviolet lithography in particular, were exploited to develop a capillary electrophoresis (CE) separation chip which incorporates a monolithically integrated electrospray ionization (ESI) emitter for efficient coupling with MS. An epoxy photoresist SU-8 was adopted as structural material and characterized with respect to its physicochemical properties relevant to chip-based CE and ESI/MS, namely surface charge, surface interactions, heat transfer, and solvent compatibility. As a result, SU-8 was found to be a favorable material to substitute for the more commonly used glass and silicon in microfluidic applications. In addition, an infrared (IR) thermography was introduced as direct, non-intrusive method to examine the heat transfer and thermal gradients during microchip-CE. The IR data was validated through numerical modeling. The analytical performance of SU-8-based microchips was established for qualitative and quantitative CE-ESI/MS analysis of small drug compounds, peptides, and proteins. The CE separation efficiency was found to be similar to that of commercial glass microchips and conventional CE systems. Typical analysis times were only 30-90 s per sample indicating feasibility for high-throughput analysis. Moreover, a mass detection limit at the low-attomole level, as low as 10E+5 molecules, was achieved utilizing MS detection. The SU-8 microchips developed in this work could also be mass produced at low cost and with nearly identical performance from chip to chip. Until this work, the attempts to combine CE separation with ESI in a chip-based system, amenable to batch fabrication and capable of high, reproducible analytical performance, have not been successful. Thus, the CE-ESI chip developed in this work is a substantial step toward lab-on-a-chip technology.
Resumo:
QTL mapping methods for complex traits are challenged by new developments in marker technology, phenotyping platforms, and breeding methods. In meeting these challenges, QTL mapping approaches will need to also acknowledge the central roles of QTL by environment interactions (QEI) and QTL by trait interactions in the expression of complex traits like yield. This paper presents an overview of mixed model QTL methodology that is suitable for many types of populations and that allows predictive modeling of QEI, both for environmental and developmental gradients. Attention is also given to multi-trait QTL models which are essential to interpret the genetic basis of trait correlations. Biophysical (crop growth) model simulations are proposed as a complement to statistical QTL mapping for the interpretation of the nature of QEI and to investigate better methods for the dissection of complex traits into component traits and their genetic controls.
Resumo:
BACKGROUND Given moderately strong genetic contributions to variation in alcoholism and heaviness of drinking (50% to 60% heritability) with high correlation of genetic influences, we have conducted a quantitative trait genome-wide association study (GWAS) for phenotypes related to alcohol use and dependence. METHODS Diagnostic interview and blood/buccal samples were obtained from sibships ascertained through the Australian Twin Registry. Genome-wide single nucleotide polymorphism (SNP) genotyping was performed with 8754 individuals (2062 alcohol-dependent cases) selected for informativeness for alcohol use disorder and associated quantitative traits. Family-based association tests were performed for alcohol dependence, dependence factor score, and heaviness of drinking factor score, with confirmatory case-population control comparisons using an unassessed population control series of 3393 Australians with genome-wide SNP data. RESULTS No findings reached genome-wide significance (p = 8.4 x 10(-8) for this study), with lowest p value for primary phenotypes of 1.2 x 10(-7). Convergent findings for quantitative consumption and diagnostic and quantitative dependence measures suggest possible roles for a transmembrane protein gene (TMEM108) and for ANKS1A. The major finding, however, was small effect sizes estimated for individual SNPs, suggesting that hundreds of genetic variants make modest contributions (1/4% of variance or less) to alcohol dependence risk. CONCLUSIONS We conclude that: - 1) meta-analyses of consumption data may contribute usefully to gene discovery; - 2) translation of human alcoholism GWAS results to drug discovery or clinically useful prediction of risk will be challenging, and; - 3) through accumulation across studies, GWAS data may become valuable for improved genetic risk differentiation in research in biological psychiatry (e.g., prospective high-risk or resilience studies).
Resumo:
Modifications of surface materials and their effects on cleanability have important impacts in many fields of activity. In this study the primary aim was to develop radiochemical methods suitable for evaluating cleanability in material research for different environments. Another aim was to investigate the effects of surface modifications on cleanabilitity and surface properties of plastics, ceramics, concrete materials and also their coatings in conditions simulating their typical environments. Several new 51Cr and 14C labelled soils were developed for testing situations. The new radiochemical methods developed were suitable for examining different surface materials and different soil types, providing quantitative information about the amount of soil on surfaces. They also take into account soil soaked into surfaces. The supporting methods colorimetric determination and ATP bioluminescence provided semi-quantitative results. The results from the radiochemical and supporting methods partly correlated with each other. From a material research point of view numerous new materials were evaluated. These included both laboratory-made model materials and commercial products. Increasing the amount of plasticizer decreased the cleanability of poly(vinyl chloride) (PVC) materials. Microstructured surfaces of plastics improved the cleanability of PVC from particle soils, whereas for oil soil microstructuring reduced the cleanability. In the case of glazed ceramic materials, coatings affected the cleanability. The roughness of surfaces correlated with cleanability from particle soils and the cleanability from oil soil correlated with the contact angles. Organic particle soil was removed more efficiently from TiO2-coated ceramic surfaces after UV-radiation than without UV treatment, whereas no effect was observed on the cleanability of oil soil. Coatings improved the cleanability of concrete flooring materials intended for use in animal houses.
Resumo:
Rarely is it possible to obtain absolute numbers in free-ranging populations and although various direct and indirect methods are used to estimate abundance, few are validated against populations of known size. In this paper, we apply grounding, calibration and verification methods, used to validate mathematical models, to methods of estimating relative abundance. To illustrate how this might be done, we consider and evaluate the widely applied passive tracking index (PTI) methodology. Using published data, we examine the rationality of PTI methodology, how conceptually animal activity and abundance are related and how alternative methods are subject to similar biases or produce similar abundance estimates and trends. We then attune the method against populations representing a range of densities likely to be encountered in the field. Finally, we compare PTI trends against a prediction that adjacent populations of the same species will have similar abundance values and trends in activity. We show that while PTI abundance estimates are subject to environmental and behavioural stochasticity peculiar to each species, the PTI method and associated variance estimate showed high probability of detection, high precision of abundance values and, generally, low variability between surveys, and suggest that the PTI method applied using this procedure and for these species provides a sensitive and credible index of abundance. This same or similar validation approach can and should be applied to alternative relative abundance methods in order to demonstrate their credibility and justify their use.
Resumo:
Platelet endothelial cell adhesion molecule 1 (PECAM-1) has many functions, including its roles in leukocyte extravasation as part of the inflammatory response and in the maintenance of vascular integrity through its contribution to endothelial cell−cell adhesion. PECAM-1 has been shown to mediate cell−cell adhesion through homophilic binding events that involve interactions between domain 1 of PECAM-1 molecules on adjacent cells. However, various heterophilic ligands of PECAM-1 have also been proposed. The possible interaction of PECAM-1 with glycosaminoglycans (GAGs) is the focus of this study. The three-dimensional structure of the extracellular immunoglobulin (Ig) domains of PECAM-1 were constructed using homology modeling and threading methods. Potential heparin/heparan sulfate-binding sites were predicted on the basis of their amino acid consensus sequences and a comparison with known structures of sulfate-binding proteins. Heparin and other GAG fragments have been docked to investigate the structural determinants of their protein-binding specificity and selectivity. The modeling has predicted two regions in PECAM-1 that appear to bind heparin oligosaccharides. A high-affinity binding site was located in Ig domains 2 and 3, and evidence for a low-affinity site in Ig domains 5 and 6 was obtained. These GAG-binding regions were distinct from regions involved in PECAM-1 homophilic interactions.
Resumo:
A mathematical model is developed to simulate oxygen consumption, heat generation and cell growth in solid state fermentation (SSF). The fungal growth on the solid substrate particles results in the increase of the cell film thickness around the particles. The model incorporates this increase in the biofilm size which leads to decrease in the porosity of the substrate bed and diffusivity of oxygen in the bed. The model also takes into account the effect of steric hindrance limitations in SSF. The growth of cells around single particle and resulting expansion of biofilm around the particle is analyzed for simplified zero and first order oxygen consumption kinetics. Under conditions of zero order kinetics, the model predicts upper limit on cell density. The model simulations for packed bed of solid particles in tray bioreactor show distinct limitations on growth due to simultaneous heat and mass transport phenomena accompanying solid state fermentation process. The extent of limitation due to heat and/or mass transport phenomena is analyzed during different stages of fermentation. It is expected that the model will lead to better understanding of the transport processes in SSF, and therefore, will assist in optimal design of bioreactors for SSF.
Resumo:
11β-hydroksisteroididehydrogenaasientsyymit (11β-HSD) 1 ja 2 säätelevät kortisonin ja kortisolin määrää kudoksissa. 11β-HSD1 -entsyymin ylimäärä erityisesti viskeraalisessa rasvakudoksessa aiheuttaa metaboliseen oireyhtymän klassisia oireita, mikä tarjoaa mahdollisuuden metabolisen oireyhtymän hoitoon 11β-HSD1 -entsyymin selektiivisellä estämisellä. 11β-HSD2 -entsyymin inhibitio aiheuttaa kortisonivälitteisen mineralokortikoidireseptorien aktivoitumisen, mikä puolestaan johtaa hypertensiivisiin haittavaikutuksiin. Haittavaikutuksista huolimatta 11β-HSD2 -entsyymin estäminen saattaa olla hyödyllistä tilanteissa, joissa halutaan nostaa kortisolin määrä elimistössä. Lukuisia selektiivisiä 11β-HSD1 inhibiittoreita on kehitetty, mutta 11β-HSD2-inhibiittoreita on raportoitu vähemmän. Ero näiden kahden isotsyymin aktiivisen kohdan välillä on myös tuntematon, mikä vaikeuttaa selektiivisten inhibiittoreiden kehittämistä kummallekin entsyymille. Tällä työllä oli kaksi tarkoitusta: (1) löytää ero 11β-HSD entsyymien välillä ja (2) kehittää farmakoforimalli, jota voitaisiin käyttää selektiivisten 11β-HSD2 -inhibiittoreiden virtuaaliseulontaan. Ongelmaa lähestyttiin tietokoneavusteisesti: homologimallinnuksella, pienmolekyylien telakoinnilla proteiiniin, ligandipohjaisella farmakoforimallinnuksella ja virtuaaliseulonnalla. Homologimallinnukseen käytettiin SwissModeler -ohjelmaa, ja luotu malli oli hyvin päällekäinaseteltavissa niin templaattinsa (17β-HSD1) kuin 11β-HSD1 -entsyymin kanssa. Eroa entsyymien välillä ei löytynyt tarkastelemalla päällekäinaseteltuja entsyymejä. Seitsemän yhdistettä, joista kuusi on 11β-HSD2 -selektiivisiä, telakoitiin molempiin entsyymeihin käyttäen ohjelmaa GOLD. 11β-HSD1 -entsyymiin yhdisteet kiinnittyivät kuten suurin osa 11β-HSD1 -selektiivisistä tai epäselektiivisistä inhibiittoreista, kun taas 11β-HSD2 -entsyymiin kaikki yhdisteet olivat telakoituneet käänteisesti. Tällainen sitoutumistapa mahdollistaa vetysidokset Ser310:een ja Asn171:een, aminohappoihin, jotka olivat nähtävissä vain 11β-HSD2 -entsyymissä. Farmakoforimallinnukseen käytettiin ohjelmaa LigandScout3.0, jolla ajettiin myös virtuaaliseulonnat. Luodut kaksi farmakoforimallia, jotka perustuivat aiemmin telakointiinkin käytettyihin kuuteen 11β-HSD2 -selektiiviseen yhdisteeseen, koostuivat kuudesta ominaisuudesta (vetysidosakseptori, vetysidosdonori ja hydrofobinen), ja kieltoalueista. 11β-HSD2 -selektiivisyyden kannalta tärkeimmät ominaisuudet ovat vetysidosakseptori, joka voi muodostaa sidoksen Ser310 kanssa ja vetysidosdonori sen vieressä. Tälle vetysidosdonorille ei löytynyt vuorovaikutusparia 11β-HSD2-mallista. Sopivasti proteiiniin orientoitunut vesimolekyyli voisi kuitenkin olla sopiva ratkaisu puuttuvalle vuorovaikutusparille. Koska molemmat farmakoforimallit löysivät 11β-HSD2 -selektiivisiä yhdisteitä ja jättivät epäselektiivisiä pois testiseulonnassa, käytettiin molempia malleja Innsbruckin yliopistossa säilytettävistä yhdisteistä (2700 kappaletta) koostetun tietokannan seulontaan. Molemmista seulonnoista löytyneistä hiteistä valittiin yhteensä kymmenen kappaletta, jotka lähetettiin biologisiin testeihin. Biologisien testien tulokset vahvistavat lopullisesti sen kuinka hyvin luodut mallit edustavat todellisuudessa 11β-HSD2 -selektiivisyyttä.