Correspondence analysis of two transition tables
| Contribuinte(s) |
Universitat Pompeu Fabra. Departament d'Economia i Empresa |
|---|---|
| Data(s) |
15/09/2005
|
| Resumo |
The case of two transition tables is considered, that is two squareasymmetric matrices of frequencies where the rows and columns of thematrices are the same objects observed at three different timepoints. Different ways of visualizing the tables, either separatelyor jointly, are examined. We generalize an existing idea where asquare matrix is descomposed into symmetric and skew-symmetric partsto two matrices, leading to a decomposition into four components: (1)average symmetric, (2) average skew-symmetric, (3) symmetricdifference from average, and (4) skew-symmetric difference fromaverage. The method is illustrated with an artificial example and anexample using real data from a study of changing values over threegenerations. |
| Identificador | |
| Idioma(s) |
eng |
| Direitos |
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a> |
| Palavras-Chave | #Statistics, Econometrics and Quantitative Methods #correspondence analysis #matrix decomposition #skew-symmetry #transition matrices |
| Tipo |
info:eu-repo/semantics/workingPaper |