Nets: Network estimation for time series
| Contribuinte(s) |
Universitat Pompeu Fabra. Departament d'Economia i Empresa |
|---|---|
| Data(s) |
11/10/2013
|
| Resumo |
This work proposes novel network analysis techniques for multivariate time series.We define the network of a multivariate time series as a graph where verticesdenote the components of the process and edges denote non zero long run partialcorrelations. We then introduce a two step LASSO procedure, called NETS, toestimate high dimensional sparse Long Run Partial Correlation networks. This approachis based on a VAR approximation of the process and allows to decomposethe long run linkages into the contribution of the dynamic and contemporaneousdependence relations of the system. The large sample properties of the estimatorare analysed and we establish conditions for consistent selection and estimation ofthe non zero long run partial correlations. The methodology is illustrated with anapplication to a panel of U.S. bluechips. |
| Identificador | |
| Idioma(s) |
eng |
| Direitos |
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a> |
| Palavras-Chave | #Finance and Accounting #Statistics, Econometrics and Quantitative Methods #networks #multivariate time series #long run covariance #lasso |
| Tipo |
info:eu-repo/semantics/workingPaper |