Inequalities for a new data-based method for selecting nonparametric density estimates
Contribuinte(s) |
Universitat Pompeu Fabra. Departament d'Economia i Empresa |
---|---|
Data(s) |
15/09/2005
|
Resumo |
We continue the development of a method for the selection of a bandwidth or a number of design parameters in density estimation. We provideexplicit non-asymptotic density-free inequalities that relate the $L_1$ error of the selected estimate with that of the best possible estimate,and study in particular the connection between the richness of the classof density estimates and the performance bound. For example, our methodallows one to pick the bandwidth and kernel order in the kernel estimatesimultaneously and still assure that for {\it all densities}, the $L_1$error of the corresponding kernel estimate is not larger than aboutthree times the error of the estimate with the optimal smoothing factor and kernel plus a constant times $\sqrt{\log n/n}$, where $n$ is the sample size, and the constant only depends on the complexity of the family of kernels used in the estimate. Further applications include multivariate kernel estimates, transformed kernel estimates, and variablekernel estimates. |
Identificador | |
Idioma(s) |
eng |
Direitos |
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a> |
Palavras-Chave | #Statistics, Econometrics and Quantitative Methods #density estimation #kernel estimate #convergence #smoothing factor #minimum distance estimate #asymptotic optimality |
Tipo |
info:eu-repo/semantics/workingPaper |