969 resultados para ver


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se pretende crear un marco de resolución de problemas que sea motivador para los alumnos del último año de Bachillerato o del primer año de estudios en la Universidad, y para ello se presentan cuatro problemas reales, cuya solución requiere establecer el concepto de integral definida, y uno histórico, que fue propuesto y resuelto por Arquímedes. Asimismo, en el desarrollo del curso se verá la importancia del uso de herramientas didácticas, tales como el generador de volúmenes de revolución, que se construirá en el propio curso, y el ordenador, cuyo uso será absolutamente necesario para resolver los problemas planteados. En suma, además de promover adaptaciones curriculares adecuadas, se fijan estos tres objetivos fundamentales: Cómo se crea un marco de resolución de problemas y cómo se integran herramientas didácticas apropiadas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exponemos en este documento algunos resultados de una investigación cualitativa que tiene como objetivo diseñar experiencias que posibiliten el desarrollo de habilidades comunicativas (NCTM, 2000) en estudiantes de once grado, y analizar como dichas habilidades contribuyen en el progreso de su pensamiento algebraico. Este estudio surge para atender una problemática identificada en estudiantes de nuevo ingreso a la universidad, quienes en una prueba inicial dejan ver que sus respuestas incorrectas refieren más a su baja interpretación de enunciados que a la incorrecta aplicación de algoritmos. Para la consecución de dicho objetivo se diseña e implementa un plan de intervención con algunos casos de estudio, quienes en las primeras etapas de implementación del plan diseñado recaen en las mismas dificultades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se pone de manifiesto la necesidad de que el profesor gestione la construcción de significado en el aula y lo haga a partir de las interpretaciones que pueda inferir de los aportes verbales de los estudiantes durante el proceso. Se muestra que la construcción de significado de una definición que un profesor podría despachar muy rápidamente (señalando un error, repitiendo la definición y pidiendo a los estudiantes que se fijen bien en ella para reformular la representación de la situación en la que el objeto definido se pone en juego), está lejos de ser un asunto baladí. En el segundo ejemplo que se presenta es posible ver cómo la gestión del profesor en pro de la construcción de significado de un objeto geométrico (en este caso, el enunciado del Teorema Localización de Puntos), no se agota en el momento en que se enuncia y demuestra el Teorema sino que se requiere también en momentos en que se usa en el marco de la resolución de un nuevo problema.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En los problemas clásicos, la proporcionalidad aparece como una relación exacta en el sentido que compara magnitudes bien determinadas y con medidas que se suponen conocidas exactamente. Es la manera como opera la llamada "regla de tres" de la escuela elemental. Así, en el movimiento uniforme, el espacio recorrido durante el tiempo fijo, es proporcional a la velocidad y para una velocidad determinada, es proporcional al tiempo. También e precio de una determinada mercadería es proporcional a la medida de la misma (longitud, si se trata de telas o alambres; peso, si se trata de azúcar patatas; volumen, si de líquidos como el vino o aceite). En las clases de nivel medio conviene poner abundantes ejemplos de magnitudes proporcionales, como las que acabamos de mencionar y otros de los que no lo son. En general, es conveniente hacer la representación gráfica de una magnitud en función de la otra, para ver si es o no una recta.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La función de Marco es describir a Kublai ciudades reales mediante el relato de sus características. Pero Kublai quiere saber ahora si una serie de características que él reúne corresponde a las de una ciudad real. La función de Kublai es inversa de la de Marco, pero está por ver si su dominio no es vacío.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El número de oro Φ=1,618... es al plano, lo que el número plástico P=1,2471... es al espacio. Ver esto es el objetivo final de este clip. Pero permitan primero una breve visita a la familia de los números metálicos en la cual destaca con luz propia el áureo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Las matemáticas y la pintura trabajan con ideas. La palabra idea viene del griego ειδω, que significa ver, mirar u observar, y de ειδοζ, que significa figura, forma, aspecto o visión. Detrás de una montaña concreta está la idea de montaña, un dibujo abstracto, unas líneas que permiten reconocer la montaña detrás de las rocas, los pinos o la nieve. La diferencia entre este árbol y árbol, entre un círculo que dibujamos en la pizarra y círculo: la diferencia entre la cosa y la idea de la cosa. En matemáticas y en pintura se buscan las ideas de las cosas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En esta sección vamos a proponer que el cine entre en la clase de matemáticas en secundaria. No se tratará sólo de entretener a los alumnos, aunque también (¡ojalá lo consiguiéramos más a menudo!), sino de aprovechar la fascinación de la pantalla para sembrar en sus mentes una idea esencial: las Matemáticas no son algo muerto, limitado a una clase y unos libros, sino que están en nuestro mundo, jugando un papel importante, tanto en la historia colectiva como en muchas historias personales. Pero hay que saber verlas, como también hay que saber ver el cine. El cine es la gran ilusión que en la oscuridad de una sala, que puede ser el aula, suplanta a la realidad. En clase, cada escena precisará un análisis posterior, una puesta en común que, además de enseñar a ver, establezca un nexo verosímil entre esa ilusión y la realidad verdadera. En cada artículo se harán reflexiones sobre el alcance y validez de la propuesta. Después, se propondrán diversas escenas, concretando los niveles y temas para su uso didáctico. Seguramente despierten la memoria cinematográfica del lector. SUMA podría ser receptora de las reseñas que permitan la localización de otras escenas por cualquier profesor interesado en la propuesta y componer con ellas un listado útil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cuantas escalas matemáticas coexisten en una vivienda normal? A esta pregunta la mayoría de ciudadanos responderían con una rotunda respuesta (¡Ninguna!) seguida de una leve sonrisa (En mi casa no entran las matemáticas). El objetivo de este clip es hacer ver la agobiante cantidad de escalas con las cuales todos (incluidos los de letras) convivimos. La exposición tendrá pues forma de carta dirigida al vecino de turno.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Una de las intenciones que subyacen al diseño de este módulo, dedicado al análisis de datos, es entender que la fase de implementación en el aula de la unidad didáctica puede entenderse como un experimento en el que la gran mayoría de los instrumentos concebidos para extraer información ya se diseñaron en el análisis de actuación. Una vez preparados los documentos que planifican el proceso de enseñanza en los módulos 1 al 4 y los instrumentos que servirán de referencia para evaluar los procesos de enseñanza y aprendizaje durante y después de la implementación (módulo 5), este módulo se centra en la organización y análisis de los datos que se producirán durante la implementación en el aula de la planificación de la unidad didáctica. Entre los datos obtenidos y que ayudarán a mejorar el aprendizaje del estudiante y a modificar la propia práctica de la enseñanza, este módulo se centrará en el aprendizaje, mientras que, en el módulo 7, se completará el análisis de datos que tienen que ver más con el proceso de enseñanza.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Por qué compramos un periódico y no otro? ¿Cuál es la razón de que veamos más esta cadena de televisión que la otra? ¿Y por qué tenemos presintonizadas algunas emisoras de radio? Seguro que todos tenemos alguna respuesta a esas preguntas, aunque lo más fácil es que sean gené- ricas en la mayoría de los casos y en bastantes tengan que ver con algu- na opción política. Pero puede ser que nuestros alumnos y alumnas ten- gan unas opciones «heredadas» de la familia (hasta que toman posesión del mando a distancia al menos) o no sean capaces de cuantificarlas de ninguna manera.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabauo ten por obxetivo o dar resposta ás duas cuestións seguintes: a) Por que se produce o cambio no tipo de curvatura das sombras dun obxcto nas distintas estacións do ano? b) As curvas descritas polos extremos da sombras son cónicas?. de que tipo? Como case sempre que se emprende unha busca como esta as preguntas anteriores dan pe. como se verá. a introducir outras cuestiona derivadas delas. Compre facer, antes de empezar. unha pequena introducción ao tema que nos ocupa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Muchas veces en clase he trazado de extremo a extremo de la pizarra una línea blanca a la que he puesto por nombre R. Este gesto invita a pensar que R, el conjunto de los números reales, se parece mucho a una fila india de puntos muy apretados. Pero los matemáticos sabemos que no es así, pues hay infinitos de diversa índole. El infinito del libro de arena borgiano es numerable, el infinito real no. El continuo real no es ni debe imaginarse como una hilera muy tupida de puntos suspensivos, sino más bien como... ya se verá.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

No hay que desempeñarse mucho ni dar razonamientos sofisticados para estar de acuerdo que entre todos los Medios de Comunicación Social (MCS) el menos apropiado para servir de soporte a las matemáticas es la radio. Porque por sus ondas pueden transmitirse ideas y situaciones que tengan que ver con los números, pero en cuanto pasemos a la geometría, ¿de qué posibilidades dispondremos para visualizar situaciones planas y mucho peor si nos involucramos en las tres dimensiones? Desde luego, que el reto es complejo y quizás por eso mismo atractivo. Y recordando que durante años (que incluso podríamos extender a siglos) el soporte principal de la enseñanza (luego se supone que del aprendizaje) de las matemáticas ha sido la pizarra (que tampoco es que sea ni muy apropiado ni muy sugestivo) igual se podría hacer algo al respecto. Tal vez valdría la pena intentarlo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La aparición hace ya unos cuantos años del programa CabriGéomètre supuso para muchos profesores y profesoras la apertura de una ventana de esperanza en el camino de ver y de enseñar la geometría de una forma diferente. El éxito de la filosofía del programa radicaba en la idea de poder contar con una pizarra electrónica en la que construir objetos geométricos tan habituales como trazar rectas, segmentos, perpendiculares, ángulos, triángulos, circunferencias, cónicas... y medir en forma directa longitudes, ángulos y áreas, se convertían en cosas tan simples como pulsar con el ratón en un icono.