855 resultados para phenolic-epoxy blends
Resumo:
Yerba mate extract (Ilex paraguariensis) is a Source of phenolic compounds that possesses in vitro antioxidant activities and may contribute to a reduction in the risk of cardiovascular disease. In this Study we examined the acute effects of the consumption of mate infusion on ex vivo plasma and low-density lipoprotein (LDL) oxidation, plasma antioxidant capacity, and platelet aggregation. Twelve healthy fasted subjects ingested 500 mL. of mate infusion and blood samples were collected before and I h after mate intake. Lipid peroxidation of plasma and LDL was monitored by the measurement of cholesteryl-ester hydroperoxides (CE-OOH) and cholesterol oxides. The plasma antioxidant capacity was measured as ferric-reducing antioxidant potential (FRAP). Platelet aggregation was evaluated in platelet-rich plasma Stimulated with adenosine diphosphate and coagulation was tested in platelet-poor plasma. Ingestion of mate infusion diminished the ex vivo oxidizability of both plasma and LDL particles. After mate intake, the CE-OOH levels were around 50% lower in plasma oxidized with copper or 2,2`-azobis[-2-amidine-propane-hydrochloride] (AAPH) and the lag time to plasma oxidation increased 2-fold (P < 0.05). Copper- and AAPH-induced LDL peroxidation were also inhibited by around 50% and 20%, respectively, after mate Consumption (P < 0.05). The levels of various oxysterols were significantly reduced in oxidized-plasma and LDL (P < 0.05) and FRAP increased by 7.7% after mate intake (P < 0.01). However. mate consumption did not inhibit platelet aggregation or blood coagulation. In summary, intake of yerba mate infusion improved the antioxidant capacity and the resistance of plasma and LDL particles to ex vivo lipid peroxidation. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
An exhaustive analysis of the crystallisation behaviour of palm oil was performed using low-resolution magnetic pulsed nuclear resonance, differential scanning calorimetry, polarised light microscopy and X-ray diffraction. The aim of this study was to characterise the changes induced in the crystallisation of palm oil by the addition of two different levels of tripalmitin and two different types of monoacylglycerols. The addition of monoacylglycerols led to the formation of a large number of crystallisation nuclei without changing the final solids content, accelerating the process of crystal formation, leading to the formation of smaller crystals than those found in the refined palm oil. Higher levels of tripalmitin produced crystals with larger dimensions, reducing the induction period and resulted in a higher level of solids at the end of the crystallisation period. The addition of monoacylglycerols and tripalmitin induced the formation of a polymorphic beta-form. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Interesterification of palm stearin (PS) with liquid vegetable oils could yield a good solid fat stock that may impart desirable physical properties, because PS is a useful source of vegetable hard fat, providing beta` stable solid fats Dietary ingestion of olive oil (OO) has been reported to have physiological benefits such as lowering serum cholesterol levels Fat blends, formulated by binary blends of palm stearin and olive oil in different ratios, were subjected to chemical interesterification with sodium methoxide The original and interesterified blends were examined for fatty acid and triacylglycerol composition, melting point, solid fat content (SFC) and consistency. Interestenfication caused rearrangement of triacylglycerol species, reduction of trisaturated and triunsaturated triacylglycerols content and increase in diunsaturated-monosaturated triacylglycerols of all blends, resulting in lowering of melting point and solid fat content The incorporation of OO to PS reduced consistency, producing more plastic blends The mixture and chemical interesterification allowed obtaining fats with various degrees of plasticity, increasing the possibilities for the commercial use of palm stearin and olive oil (C) 2009 Elsevier Ltd All rights reserved
Resumo:
This study investigated the viability of probiotic (Lactobacillus acidophilus LA5, Lactobacillus rhamnosus LBA and Bifidobacterium animalis subsp. lactis BL-04) in milk fermented with Lactobacillus delbrueckii subsp. bulgaricus LB340 and Streptococcus thermophilus TAO (yoghurt - Y). Each probiotic strain was grown separately in co-culture with Y and in blends of different combinations. Blends affected fermentation time(s), pH and firmness during storage at 4 degrees C. The product made with Y plus B. animalis subsp. lactis and L. rhamnosus had counts of viable cells at the end of shelf life that met the minimum required to achieve probiotic effect. However, L. acidophilus and L. delbrueckii subsp. bulgaricus were inhibited.
Resumo:
Blends of soybean oil (SO) and fully hydrogenated soybean oil (FHSBO), with 10, 20, 30, 40, and 50% (w/w) FHSBO content were interesterified under the following conditions: 20 min reaction time, 0.4% sodium methoxide catalyst, and 500 rpm stirring speed, at 100 A degrees C. The original and interesterified blends were examined for triacylglycerol composition, thermal behavior, microstructure, crystallization kinetics, and polymorphism. Interesterification produced substantial rearrangement of the triacylglycerol species in all the blends, reduction of trisaturated triacylglycerol content and increase in monounsaturated-disaturated and diunsaturated-monosaturated triacylglycerols. Evaluation of thermal behavior parameters showed linear relations with FHSBO content in the original blends. Blend melting and crystallization thermograms were significantly modified by the randomization. Interesterification caused significant reductions in maximum crystal diameter in all blends, in addition to modifying crystal morphology. Characterization of crystallization kinetics revealed that crystal formation induction period (tau (SFC)) and maximum solid fat content (SFC(max)) were altered according to FHSBO content in the original blends and as a result of the random rearrangement. Changes in Avrami constant (k) and exponent (n) indicated, respectively, that-as compared with the original blends-interesterification decreased crystallization velocities and modified crystallization processes, altering crystalline morphology and nucleation mechanism. X-ray diffraction analyses revealed that interesterification altered crystalline polymorphism. The interesterified blends showed a predominance of the beta` polymorph, which is of more interest for food applications.
Resumo:
Blends of soybean oil (50) and fully hydrogenated soybean oil (FHSBO), with 10%, 20%, 30%, 40% and 50% FHSBO (w/w) content were interesterified under the following conditions: 0.4% sodium methoxide, 500 rpm stirring, 100 degrees C, 20 min. The original and interesterified blends were examined for triacylglycerol composition, melting point, solid fat content (SFC) and consistency. Interesterification caused considerable rearrangement of triacylglycerol species, reduction of trisaturated triacylglycerol content and increase in monounsaturated and diunsaturated triacylglycerols, resulting in lowering of respective melting points. The interesterified blends displayed reduced SFC at all temperatures and more linear melting profiles as compared with the original blends. Yield values showed increased plasticity in the blends after the reaction. Isosolid diagrams before and after the reaction showed no eutectic interactions. The 90:10, 80:20, 70:30 and 60:40 interesterified SO:FHSBO blends displayed characteristics suited to application, respectively, as liquid shortening, table margarine, baking/confectionery fat and all-purpose shortenings/biscuit-filing base. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Almost 30 years after the introduction of heart valve prostheses patients worldwide are benefiting from the implant of these devices. Among the various types of heart valves, the ones made of treated bovine pericardium have become a frequently used replacement of the heart`s native valve. Lyophilization, also known as freeze-drying, is an extremely useful technique for tissue storage for surgical applications. This article gives a brief overview on the current bovine pericardium lyophilization development, including the chemical modification to improve physical-chemical characteristics and the advanced technologies used to guarantee a high-quality product. It was shown that lyophilization process can be successfully applied as a method of bovine pericardium preservation and also as a technological tool to prepare new materials obtained by chemical modification of native tissues.
Resumo:
Aim of the study: Species of Lychnophora are used in Brazilian folk medicine as analgesic and anti-inflammatory agents. Chlorogenic acid (CGA) and their analogues are important components of polar extracts of these species, as well in several European and Asian medicinal plants. Some of these phenolic compounds display anti-inflammatory effects. In this paper we report the isolation of CGA from Lychnophora salicifolia and its effects on functions involved in neutrophils locomotion. Materials and methods: LC-MS(n) data confirmed the presence of CGA in the plant. Actions of CGA were investigated on neutrophils obtained from peritoneal cavity of Wistar rats (4h after 1% oyster glycogen solution injection; 10 ml), and incubated with vehicle or with 50, 100 or 1000 mu M CGA in presence of lipopolysaccharide from Escherichia coil (LPS, 5 mu g/ml). Nitric oxide (NO; Griess reaction); prostaglandin E(2) (PGE(2)), interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha [TNF-alpha; enzyme-linked immunosorbent assay (EIA)]; protein (flow cytometry) and gene (RT-PCR) expression of L-selectin, beta(2)integrin and platelet-endothelial cell adhesion molecule-1 (PECAM-1) were quantified. In vitro neutrophil adhesion to primary culture of microvascular endothelial cell (PMEC) and neutrophil migration in response to formyl-methionil-leucil-phenilalanine (fMLP, 10(-8)M, Boyden chamber) was determined. Results: CGA treatment did not modify the secretion of inflammatory mediators, but inhibited L-selectin cleavage and reduced beta(2) integrin, independently from its mRNA synthesis, and reduced membrane PECAM-1 expression: inhibited neutrophil adhesion and neutrophil migration induced by fMLP. Conclusions: Based on these findings, we highlight the direct inhibitory actions of CGA on adhesive and locomotion properties of neutrophils, which may contribute to its anti-inflammatory effects and help to explain the use of Lychnophora salicifolia as an anti-inflammatory agent. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Hydrophilic dentin adhesives are prone to water sorption that adversely affects the durability of resin-dentin bonds. This study examined the feasibility of bonding to dentin with hydrophobic resins via the adaptation of electron microscopy tissue processing techniques. Hydrophobic primers were prepared by diluting 2,2-bis[4(2-hydroxy-3-methacryloyloxy-propyloxy)-phenyl] propane/triethyleneglycol dimethacrylate resins with known ethanol concentrations. They were applied to acid-etched moist dentin using an ethanol wet bonding technique that involved: (1) stepwise replacement of water with a series of increasing ethanol concentrations to prevent the demineralized collagen matrix from collapsing; (2) stepwise replacement of the ethanol with different concentrations of hydrophobic primers and subsequently with neat hydrophobic resin. Using the ethanol wet bonding technique, the experimental primer versions with 40, 50, and 75% resin exhibited tensile strengths which were not significantly different from commercially available hydrophilic three-step adhesives that were bonded with water wet bonding technique. The concept of ethanol wet bonding may be explained in terms of solubility parameter theory. This technique is sensitive to water contamination, as depicted by the lower tensile strength results from partial dehydration protocols. The technique has to be further improved by incorporating elements of dentin permeability reduction to avoid water from dentinal tubules contaminating water-free resin blends during bonding. (c) 2007 Wiley Periodicals, Inc. J Biomed Mater Res 84A: 19-29, 2008.
Resumo:
Plectranthus barbatus Andrews (Lamiaceae) is a popular medicinal plant used to treat gastrointestinal and hepatic ailments. In this work, we assessed the antioxidant activity of the aqueous extract of P. barbatus leaves on Fe(2+)-citrate-mediated membrane lipid peroxidation in isolated rat liver mitochondria, as well in non-mitochondrial systems: DPPH reduction, (center dot)OH scavenging activity, and iron chelation by prevention of formation of the Fe(2+)-bathophenanthroline disulfonic acid (BPS) complex. Within all the tested concentrations (15-75 mu g/ml), P. barbatus extract presented significant free radical-scavenging activity (IC(50) = 35.8 +/- 0.27 mu g/ml in the DPPH: assay and IC(50) = 69.1 +/- 0.73 mu g/ml in the (center dot)OH assay) and chelated iron (IC(50) = 30.4 +/- 3.31 mu g/ml). Over the same concentration range, the plant extract protected mitochondria against Fe(2+)/citrate-mediated swelling and malondialdehyde production, a property that persisted even after simulation of its passage through the digestive tract. These effects could be attributed to the phenolic compounds, nepetoidin - caffeic acid esters, present in the extract. Therefore, P. barbatus extract prevents mitochondrial membrane lipid peroxidation, probably by chelation of iron, revealing potential applicability as a therapeutic source of molecules against diseases involving mitochondrial iron overload. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes an analytical method for the rapid screening and identification of the phenolic constituents present in the polar extracts of different Lychnophora spp. using LC-UV/DAD-ESI-MS and LC-UV/DAD-ESI-MS/MS. Compounds were identified based on UV, retention time, MS experiments and MS/MS of precursor ion or standard. On-line phytochemical investigation of Lychnophora spp. allowed for the identification of flavonoids, chlorogenic acid derivatives and lactones. Some of the observed compounds were for the first time identified in Lychnophora species in a fast analytical procedure. The data obtained here may be helpful to the investigation of polar constituents from other Lychnophora species.
Resumo:
Microencapsulation of Lippia sidoides essential oil was carried out by spray drying. Blends of maltodextrin and gum arabic were used as carrier. Spray dried microparticles were characterized using conventional (thermogravimetry, evolved gas analysis) and combined (thermogravimetry-mass spectrometry analysis) thermal analysis techniques in order to evaluate the abilities of carriers with different compositions in retaining and in releasing the core vs. dynamic heating. Thermal analysis was useful to evaluate the physico-chemical interactions between the core and carriers and to determine the protective effect of the carriers on the evaporation of essential oil.
Resumo:
Flower and inflorescence anatomy and morphology of Exostyles, Harleyodendron, Holocalyx, Lecointea, and Zollernia (Leguminosae, Lecointea clade) were studied. Features common to all genera but otherwise rare within the Leguminosae include: (1) the presence of phenolic compounds in the epidermal cells of the anthers and subepidermal cells of the bracteoles, sepals, petals, and ovaries (absent in Holocalyx balansae); (2) simple trichomes on the adaxial base of the bracteoles and on the surface of the calyx and ovaries; and (3) tapetum persisting until the androspores are formed. Other notable anatomical features are: (1) colleters on the adaxial bases of the bracts and bracteoles of Holocalyx balansae and Zollernia ilicifolia; (2) trichomes on the anthers of Harleyodendron unifoliolatum, Holocalyx balansae, Lecointea hatschbachii, Zollernia ilicifolia and Z. magnifica; (3) osmophores on the petals of Exostyles godoyensis; (4) asynchronous pollen development in the anthers of Holocalyx balansae and Zollernia magnifica; and (5) vascular bundles surrounded by lignified fibers in Harleyodendron unifoliolatum. These anatomical characters are discussed according to their possible phylogenetic implications.
Resumo:
This article presents an investigation of the potential of spray and spouted bed technology for the production of dried extracts of Rosmarinus officinalis Linne, popularly known as rosemary. The extractive solution was characterized by loss on drying, extractable matter and total phenolic and flavonoid compounds (chemical markers). The product was characterized by determination of loss on drying, size distribution, morphology, flow properties and thermal degradation and thermal behavior. The spray and spouted bed dryer performance were assessed through estimation of thermal efficiency, product accumulation and product recovery. The parameters studied were the inlet temperature of the spouting gas (80 and 150 degrees C) and the feed mass flow rate of concentrated extract relative to the evaporation capacity of the dryer, W-s/W-max (15 to 75%). The atomizing air flow rate was maintained at 20 l/min with a pressure of 196.1 kPa. The spouting gas flow rate used in the drying runs was 40% higher than the gas flow under the condition of minimum spouting. The spray drying gas flow rate was fixed at 0.0118 kg/s. Under the conditions studied, performance in the spray and spouted bed drying of rosemary extract was poor, causing high degradation of the marker compounds (mainly the phenolic compounds). Thus, process improvements are required before use on an industrial scale.
Resumo:
Papulaspora immersa H. H. HOTS ON was isolated from roots and leaves of Smallanthus sonchifolius (POEPP. and ENDL.) H. ROB. (Asteraceae), traditionally known as Yacon. The fungus was cultured in rice, and, from the AcOEt fraction, 14 compounds were isolated. Among them, (22E,24R)-8,14-epoxyergosta-4,22-diene-3,6-dione (4), 2,3-epoxy-1,2,3,4-tetrahydronaphthalene-c-1,c-4,8-triol (10), and the chromone papulasporin (13) were new secondary metabolites. The spectral data of the known natural products were compared with the literature data, and their structures were established as the (24R)stigmast 4 en 3 one (1), 24-methylenecycloartan-3 beta-ol (2), (22E,24R)-ergosta-4,6,8(14),22-tetraen-3-one (3), (-)-(3R,4R)-4-hydroxymellein (5), (-)-(3R)-5-hydroxymellein (6), 6,8-dihydroxy-3-methylisocoumarin (7), (-)-(4S)-4,8-dihydroxy-alpha-tetralone (8), naphthalene-1,8-diol (9), 6,7,8-trihydroxy-3-methylisocoumarin (11), 7-hydroxy-2,5-dimethylchromone (12), and tyrosol (14). Compound 4 showed the highest cytotoxic activity against the human tumor cell lines MDA-MB435 (melanoma), HCT-8 (colon), SF295 (glioblastoma), and HL-60 (promyelocytic leukemia), with IC(50) values of 3.3, 14.7, 5.0 and 1.6 mu m, respectively. Strong synergistic effects were also observed with compound 5 and some of the isolated steroidal compounds.