885 resultados para Solid State Dye Sensitized Solar Cell
Resumo:
Se calculó la obtención de las constantes ópticas usando el método de Wolfe. Dichas contantes: coeficiente de absorción (α), índice de refracción (n) y espesor de una película delgada (d ), son de importancia en el proceso de caracterización óptica del material. Se realizó una comparación del método del Wolfe con el método empleado por R. Swanepoel. Se desarrolló un modelo de programación no lineal con restricciones, de manera que fue posible estimar las constantes ópticas de películas delgadas semiconductoras, a partir únicamente, de datos de transmisión conocidos. Se presentó una solución al modelo de programación no lineal para programación cuadrática. Se demostró la confiabilidad del método propuesto, obteniendo valores de α = 10378.34 cm−1, n = 2.4595, d =989.71 nm y Eg = 1.39 Ev, a través de experimentos numéricos con datos de medidas de transmitancia espectral en películas delgadas de Cu3BiS3.
Resumo:
Se presentan los modelos de hopping de rango variable (variable range hopping; VRH), vecinos cercanos (nearest neighbor hopping; NNH) y barreras de potencial presentes en las fronteras de grano; como mecanismos de transporte eléctrico predominantes en los materiales semiconductores para aplicaciones fotovoltaicas. Las medidas de conductividad a oscuras en función de temperatura fueron realizadas para región de bajas temperaturas entre 120 y 400 K con Si y compuestos Cu3BiS2 y Cu2ZnSnSe4. Siguiendo la teoría de percolación, se obtuvieron parámetros hopping y la densidad de estados cerca del nivel de Fermi, N(EF), para todas las muestras. A partir de los planteamientos dados por Mott para VRH, se presentó el modelo difusional, que permitió establecer la relación entre la conductividad y la densidad de estados de defecto o estados localizados en el gap del material. El análisis comparativo entre modelos, evidenció, que es posible obtener mejora hasta de un orden de magnitud en valores para cada uno de los parámetros hopping que caracterizan el material.
Resumo:
In this paper, we carried out first-principles calculations in order to investigate the structural and electronic properties of the binary compound gallium antimonide (GaSb). This theoretical study was carried out using the Density Functional Theory within the plane-wave pseudopotential method. The effects ofexchange and correlation (XC) were treated using the functional Local Density Approximation (LDA), generalized gradient approximation (GGA): Perdew–Burke–Ernzerhof (PBE), Perdew-Burke-Ernzerhof revised for solids (PBEsol), Perdew-Wang91 (PW91), revised Perdew–Burke–Ernzerhof (rPBE), Armiento–Mattson 2005 (AM05) and meta-generalized gradient approximation (meta-GGA): Tao–Perdew– Staroverov–Scuseria (TPSS) and revised Tao–Perdew–Staroverov–Scuseria (RTPSS) and modified Becke-Johnson (MBJ). We calculated the densities of state (DOS) and band structure with different XC potentials identified and compared them with the theoretical and experimental results reported in the literature. It was discovered that functional: LDA, PBEsol, AM05 and RTPSS provide the best results to calculate the lattice parameters (a) and bulk modulus (B0); while for the cohesive energy (Ecoh), functional: AM05, RTPSS and PW91 are closer to the values obtained experimentally. The MBJ, Rtpss and AM05 values found for the band gap energy is slightly underestimated with those values reported experimentally.
Resumo:
This thesis focusses on the study of several luminescent materials and investigates some related technological applications. It is made of six chapters. Chapter 1 introduces a brief history, basic principles and applications of photoluminescence. Chapter 2 presents the photophysical properties of five benzoheterodiazole dyes. These molecules were incorporated in PMMA- and PDMS-based LSC-PV devices to determine the emission quantum yields, transmission, re-absorption and IPCE properties. DFT calculations were performed to investigate the structures and energy levels of these dyes. Chapter 3 concerns the preparation of a luminescent film to calibrate an ESA satellite that will monitor the fluorescence of terrestrial vegetation. ZnPc was selected as suitable dye to make the film. Ferrocene was selected as quencher to control the emission intensity. An industrial printing technology was used to produce large-area calibration sheets coated with green pigment that simulates the NIR reflectance of green plants in which the ZnPc is embedded. Photophysical properties of a series of alkynyl gold NHC complexes containing naphthalimide chromophore were studied in Chapter 4. All the compounds were studied in solution and solid state. Further investigations were carried out by incorporating these compounds in PMMA matrix to make films. XRD and DFT calculations were made to determine the structures and energy levels of the complexes. In chapter 5 we studied the photophysical properties of star-shaped molecular systems which can operate as molecular motors when attached onto surface, along with those of their related ligands/moieties in tetrahydrofuran solution. The photophysical properties of these molecular systems can show if they are suitable to operate as light-triggered molecular machines. Finally, chapter 6 concerns the photoluminescence behavior of three NHC half-sandwich Ir/Rh metal complexes. The photophysical properties of these compounds were examined in CH2Cl2 solutions and PMMA films. These complexes may prove potential candidates for organic phosphorescent materials.
Resumo:
Due to the low cost, lightness and flexibility, Polymer Solar Cell (PSC) technology is considered one of the most promising energy technologies. In the past decades, PSCs using fullerenes or fullerene derivatives as the electron acceptors have made great progress with best power conversion efficiency (PCE) reaching 11%. However, fullerene type electron acceptors have several drawbacks such as complicated synthesis, a low light absorption coefficient and poor tuning in energy levels, which prevent the further development of fullerene-based PSCs. Hence the need to have a new class of electron acceptors as an alternative to conventional fullerene compounds. Non-fullerene acceptors (NFAs) have developed rapidly in the last years and the maximum PCEs have exceeded 14% for single-junction cells and 17% for double-junction tandem cells. By combining an electron-donating backbone, generally with several fused rings with electron-withdrawing units, we can simply construct NFA of the acceptor–donor–acceptor type (A–D–A). Versatile molecular structures have been developed using methods such as acceptor motif engineering and donor motif engineering. However, there are only a few electron-donating backbones that have been proved to be successful. Therefore, it is still necessary to develop promising building blocks to further enrich the structural diversity. An indacenodithiophene (IDT) unit with just five fused rings has a sufficiently rigid coplanar structure, which has been regarded as one of the promising electron-rich units to design high-performance A–D–A NFAs. In this work, performed at the King Abdullah University of Science and Technology in Saudi Arabia, a new nine-cyclic building block (TBIDT) with a two benzothiophene unit was synthesized and used for designing new non-fullerene electron acceptors.
Resumo:
After initial efforts in the late 1980s, the interest in thermochemiluminescence (TCL) as an effective detection technique has gradually faded due to some drawbacks, such as the high temperatures required to trigger the light emission and the relatively low intensities, which determined a poor sensitivity. Recent advances made with the adoption of variably functionalized 1,2-dioxetanes as innovative luminophores, have proved to be a promising approach for the development of reagentless and ultrasensitive detection methods exploitable in biosensors by using TCL compounds as labels, as either single molecules or included in modified nanoparticles. In this PhD Thesis, a novel class of N-substituted acridine-containing 1,2-dioxetanes was designed, synthesized, and characterized as universal TCL probes endowed with optimal emission-triggering temperatures and higher detectability particularly useful in bioanalytical assays. The different decorations introduced by the insertion of both electron donating (EDGs) and electron withdrawing groups (EWGs) at the 2- and 7-positions of acridine fluorophore was found to profoundly affect the photophysical properties and the activation parameters of the final 1,2-dioxetane products. Challenges in the synthesis of 1,2-dioxetanes were tackled with the recourse to continuous flow photochemistry to achieve the target parent compound in high yields, short reaction time, and easy scalability. Computational studies were also carried out to predict the olefins reactivity in the crucial photooxygenation reaction as well as the final products stability. The preliminary application of TCL prototype molecule has been performed in HaCaT cell lines showing the ability of these molecules to be detected in real biological samples and cell-based assays. Finally, attempts on the characterization of 1,2-dioxetanes in different environments (solid state, optical glue and nanosystems) and the development of bioconjugated TCL probes will be also presented and discussed.
Resumo:
This PhD thesis sets its goal in the application of crystal engineering strategies to the design, formulation, synthesis, and characterization of innovative materials obtained by combining well established biologically active molecules and/or GRAS (generally recognized as safe) compounds with co-formers able to modulate specific properties of the molecule of interest. The solid-state association, via non-covalent interactions, of an active ingredient with another molecular component, a metal salt or a complex, may alter in a useful way the physicochemical properties of the active ingredient and/or may allow to explore new ways to enhance, in a synergistic way, the overall biological performance. More specifically this thesis will address the threat posed by the increasing antimicrobial resistance (AMR) developed by microorganisms, which call for novel therapeutic strategies. Crystal engineering provides new tools to approach this crisis in a greener and cost-effective way. This PhD work has been developed along two main research lines aiming to contribute to the search for innovative solutions to the AMR problem. Design, preparation and characterization of novel metal-based antimicrobials, whereby organic molecules with known antimicrobial properties are combined with metal atoms also known to exert antimicrobial action. Design, preparation and characterization of co-crystals obtained by combining antibacterial APIs (active pharmaceutical ingredients) with natural antimicrobials.
Resumo:
The research project of my experimental thesis deals with the design, synthesis and characterization of a new series of luminescent metallapolymers to be exploited for their peculiar photophysical and opto-electronic properties. To this end, our design strategy consisted in the incorporation of brightly luminescent and colour tuneable Ir(III) cyclometalated complexes with general formula [Ir(C^N)2(N^N)]+, where C^N represents various phenyl piridine based cyclometalating ligands and N^N is an aromatic chelating N-heterocyle, into methyl methacrylate (MMA) based copolymers. Whereas the choice of the cyclometalating ligands was driven by the possibility to obtain different emission colours, the design of the N^N ligands was aimed to obtain a molecule capable of providing the chelate coordination to the metal centre and, at the same time, of being susceptible to polymerisation reactions. To fulfil these requirements, a new molecule (abbreviated as L) consisting in an alkylated 2-pyrydyl tetrazole structure equipped with a styryl unit was designed and successfully prepared. The preparation of the target cationic metallapolymers was accomplished by the complexation of the preformed MMA-L copolymers with different amounts of an appropriate Ir(III) dimeric precursor [(Ir(C^N)2Cl)2]. The investigation of the photophysical features of the new hybrid compounds in the solid state at r.t. suggested how these metallapolymers displayed brightly intense phosphorescent emissions, whose colour was found to span from blue to yellow according to the nature of the cyclometalating ligands. In all cases, the emissive performances were superior to those displayed by the corresponding mononuclear “model” complexes. These promising results pave the way for the application of this new class of metallapolymers as Luminescent Solar Concentrators for the photovoltaic technology and/or to solid state lighting.
Resumo:
This thesis work aims to produce and test multilayer electrodes for their use as photocathode in a PEC device. The electrode developed is based on CIGS, a I-III-VI2 semiconductor material composed of copper (Cu), indium (In), Gallium (Ga) and selenium (Se). It has a bandgap in the range of 1.0-2.4 eV and an absorption coefficient of about 105cm−1, which makes it a promising photocathode for PEC water splitting. The idea of our multilayer electrode is to deposit a thin layer of CdS on top of CIGS to form a solid-state p–n junction and lead to more efficient charge separation. In addition another thin layer of AZO (Aluminum doped zinc oxide) is deposit on top of CdS since it would form a better alignment between the AZO/CdS/CIGS interfaces, which would help to drive the charge transport further and minimize charge recombination. Finally, a TiO2 layer on top of the electrodes is used as protective layer during the H2 evolution. FTO (Fluorine doped tin oxide) and Molybdenum are used as back-contact. We used the technique of RF magnetron sputtering to deposit the thin layers of material. The structural characterization performed by XDR measurement confirm a polycrystalline chalcopyrite structural with a preferential orientation along the (112) direction for the CIGS. From linear fit of the Tauc plot, we get an energy gap of about 1.16 eV. In addition, from a four points measurements, we get a resistivity of 0.26 Ωcm. We performed an electrochemical characterization in cell of our electrodes. The results show that our samples have a good stability but produce a photocurrent of the order of μA, three orders of magnitude smaller than our targets. The EIS analysis confirm a significant depletion of the species in front of the electrode causing a lower conversion of the species and less current flows.
Resumo:
The mesoporous SBA-15 silica with uniform hexagonal pore, narrow pore size distribution and tuneable pore diameter was organofunctionalized with glutaraldehyde-bridged silylating agent. The precursor and its derivative silicas were ibuprofen-loaded for controlled delivery in simulated biological fluids. The synthesized silicas were characterized by elemental analysis, infrared spectroscopy, (13)C and (29)Si solid state NMR spectroscopy, nitrogen adsorption, X-ray diffractometry, thermogravimetry and scanning electron microscopy. Surface functionalization with amine containing bridged hydrophobic structure resulted in significantly decreased surface area from 802.4 to 63.0 m(2) g(-1) and pore diameter 8.0-6.0 nm, which ultimately increased the drug-loading capacity from 18.0% up to 28.3% and a very slow release rate of ibuprofen over the period of 72.5h. The in vitro drug release demonstrated that SBA-15 presented the fastest release from 25% to 27% and SBA-15GA gave near 10% of drug release in all fluids during 72.5 h. The Korsmeyer-Peppas model better fits the release data with the Fickian diffusion mechanism and zero order kinetics for synthesized mesoporous silicas. Both pore sizes and hydrophobicity influenced the rate of the release process, indicating that the chemically modified silica can be suggested to design formulation of slow and constant release over a defined period, to avoid repeated administration.
Resumo:
The aim of this study was to estimate barite mortar attenuation curves using X-ray spectra weighted by a workload distribution. A semi-empirical model was used for the evaluation of transmission properties of this material. Since ambient dose equivalent, H(⁎)(10), is the radiation quantity adopted by IAEA for dose assessment, the variation of the H(⁎)(10) as a function of barite mortar thickness was calculated using primary experimental spectra. A CdTe detector was used for the measurement of these spectra. The resulting spectra were adopted for estimating the optimized thickness of protective barrier needed for shielding an area in an X-ray imaging facility.
Resumo:
Amyloglucosidase enzyme was produced by Aspergillus niger NRRL 3122 from solid-state fermentation, using deffated rice bran as substrate. The effects of process parameters (pH, temperature) in the equilibrium partition coefficient for the system amyloglucosidase - resin DEAE-cellulose were investigated, aiming at obtaining the optimum conditions for a subsequent purification process. The highest partition coefficients were obtained using 0.025M Tris-HCl buffer, pH 8.0 and 25ºC. The conditions that supplied the highest partition coefficient were specified, the isotherm that better described the amyloglucosidase process of adsorption obtained. It was observed that the adsorption could be well described by Langmuir equation and the values of Qm and Kd estimated at 133.0 U mL-1 and 15.4 U mL-1, respectively. From the adjustment of the kinetic curves using the fourth-order Runge-Kutta algorithm, the adsorption (k1) and desorption (k2) constants were obtained through optimization by the least square procedure, and the values calculated were 2.4x10-3 mL U-1 min-1 for k1 and 0.037 min-1 for k2 .
Resumo:
Rare earth ion doped solid state materials are the most important active media of near-infrared and visible lasers and other photonic devices. In these ions, the occurrence of Excited State Absorptions (ESA), from long lived electronic levels, is commonplace. Since ESA can deeply affect the efficiencies of the rare earth emissions, evaluation of these transitions cross sections is of greatest importance in predicting the potential applications of a given material. In this paper a detailed description of the pump-probe technique for ESA measurements is presented, with a review of several examples of applications in Nd3+, Tm3+ and Er3+ doped materials.
Resumo:
This work reports the photophysical properties (excitation and fluorescence spectra, fluorescence quantum yield, fluorescence lifetimes) of the poly(2,7-9,9'-dihexylfluorene-dyil) in dilute solutions of four solvents (toluene, tetrahydrofuran, chloroform and ethyl acetate) as well as the properties in solid state. Photoluminescence showed spectra characteristic of disordered α-backbone chain conformation. Simulation of the electronic absorption spectra of oligomers containing 1 to 11 mers showed that the critical conjugation length is between 6 and 7 mers. We also estimated the theoretical dipole moments which indicated that a coil conformation is formed with 8 repeating units per turn. We also showed that some energy transfer process appears in solid state which decreases the emission lifetime. Furthermore, based on luminescent response of the systems herein studied and electroluminescent behavior reported on literature, both photo and electroluminescence emissions arise from the same emissive units.
Resumo:
We show that carbon nanotubes (CNTs) with high density of defects can present a strong electronic interaction with nanoparticles of Pt-Ru with average particle size of 3.5 +/- 0.8 nm. Depending on the Pt-Ru loading on the CNTs, CO and methanol oxidation reactions suggest there is a charge transfer between Pt-Ru that in turn provokes a decrease in the electronic interaction taking place between Ru and Pt in the PtRu alloy. The CO stripping potentials were observed at about 0.65 and 0.5 V for Pt-Ru/CNT electrodes with Pt-Ru loadings of 10 and 20, and 30 wt %, respectively. (C) 2008 The Electrochemical Society. [DOI: 10.1149/1.2990222] All rights reserved.